12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- # Copyright 2016 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for slim.inception."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from nets import nets_factory
- class NetworksTest(tf.test.TestCase):
- def testGetNetworkFnFirstHalf(self):
- batch_size = 5
- num_classes = 1000
- for net in nets_factory.networks_map.keys()[:10]:
- with tf.Graph().as_default() as g, self.test_session(g):
- net_fn = nets_factory.get_network_fn(net, num_classes)
- # Most networks use 224 as their default_image_size
- image_size = getattr(net_fn, 'default_image_size', 224)
- inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
- logits, end_points = net_fn(inputs)
- self.assertTrue(isinstance(logits, tf.Tensor))
- self.assertTrue(isinstance(end_points, dict))
- self.assertEqual(logits.get_shape().as_list()[0], batch_size)
- self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
- def testGetNetworkFnSecondHalf(self):
- batch_size = 5
- num_classes = 1000
- for net in nets_factory.networks_map.keys()[10:]:
- with tf.Graph().as_default() as g, self.test_session(g):
- net_fn = nets_factory.get_network_fn(net, num_classes)
- # Most networks use 224 as their default_image_size
- image_size = getattr(net_fn, 'default_image_size', 224)
- inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
- logits, end_points = net_fn(inputs)
- self.assertTrue(isinstance(logits, tf.Tensor))
- self.assertTrue(isinstance(end_points, dict))
- self.assertEqual(logits.get_shape().as_list()[0], batch_size)
- self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
- if __name__ == '__main__':
- tf.test.main()
|