123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Contains the definition of the Inception Resnet V2 architecture.
- As described in http://arxiv.org/abs/1602.07261.
- Inception-v4, Inception-ResNet and the Impact of Residual Connections
- on Learning
- Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- slim = tf.contrib.slim
- def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
- """Builds the 35x35 resnet block."""
- with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
- with tf.variable_scope('Branch_0'):
- tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
- with tf.variable_scope('Branch_1'):
- tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
- tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
- with tf.variable_scope('Branch_2'):
- tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
- tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
- tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
- mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2])
- up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
- activation_fn=None, scope='Conv2d_1x1')
- scaled_up = up * scale
- if activation_fn == tf.nn.relu6:
- # Use clip_by_value to simulate bandpass activation.
- scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)
- net += scaled_up
- if activation_fn:
- net = activation_fn(net)
- return net
- def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
- """Builds the 17x17 resnet block."""
- with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
- with tf.variable_scope('Branch_0'):
- tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
- with tf.variable_scope('Branch_1'):
- tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
- tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
- scope='Conv2d_0b_1x7')
- tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
- scope='Conv2d_0c_7x1')
- mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
- up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
- activation_fn=None, scope='Conv2d_1x1')
- scaled_up = up * scale
- if activation_fn == tf.nn.relu6:
- # Use clip_by_value to simulate bandpass activation.
- scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)
- net += scaled_up
- if activation_fn:
- net = activation_fn(net)
- return net
- def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
- """Builds the 8x8 resnet block."""
- with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
- with tf.variable_scope('Branch_0'):
- tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
- with tf.variable_scope('Branch_1'):
- tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
- tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
- scope='Conv2d_0b_1x3')
- tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
- scope='Conv2d_0c_3x1')
- mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
- up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
- activation_fn=None, scope='Conv2d_1x1')
- scaled_up = up * scale
- if activation_fn == tf.nn.relu6:
- # Use clip_by_value to simulate bandpass activation.
- scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)
- net += scaled_up
- if activation_fn:
- net = activation_fn(net)
- return net
- def inception_resnet_v2_base(inputs,
- final_endpoint='Conv2d_7b_1x1',
- output_stride=16,
- align_feature_maps=False,
- scope=None,
- activation_fn=tf.nn.relu):
- """Inception model from http://arxiv.org/abs/1602.07261.
- Constructs an Inception Resnet v2 network from inputs to the given final
- endpoint. This method can construct the network up to the final inception
- block Conv2d_7b_1x1.
- Args:
- inputs: a tensor of size [batch_size, height, width, channels].
- final_endpoint: specifies the endpoint to construct the network up to. It
- can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
- 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3',
- 'Mixed_5b', 'Mixed_6a', 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
- output_stride: A scalar that specifies the requested ratio of input to
- output spatial resolution. Only supports 8 and 16.
- align_feature_maps: When true, changes all the VALID paddings in the network
- to SAME padding so that the feature maps are aligned.
- scope: Optional variable_scope.
- activation_fn: Activation function for block scopes.
- Returns:
- tensor_out: output tensor corresponding to the final_endpoint.
- end_points: a set of activations for external use, for example summaries or
- losses.
- Raises:
- ValueError: if final_endpoint is not set to one of the predefined values,
- or if the output_stride is not 8 or 16, or if the output_stride is 8 and
- we request an end point after 'PreAuxLogits'.
- """
- if output_stride != 8 and output_stride != 16:
- raise ValueError('output_stride must be 8 or 16.')
- padding = 'SAME' if align_feature_maps else 'VALID'
- end_points = {}
- def add_and_check_final(name, net):
- end_points[name] = net
- return name == final_endpoint
- with tf.variable_scope(scope, 'InceptionResnetV2', [inputs]):
- with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
- stride=1, padding='SAME'):
- # 149 x 149 x 32
- net = slim.conv2d(inputs, 32, 3, stride=2, padding=padding,
- scope='Conv2d_1a_3x3')
- if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points
- # 147 x 147 x 32
- net = slim.conv2d(net, 32, 3, padding=padding,
- scope='Conv2d_2a_3x3')
- if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points
- # 147 x 147 x 64
- net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
- if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points
- # 73 x 73 x 64
- net = slim.max_pool2d(net, 3, stride=2, padding=padding,
- scope='MaxPool_3a_3x3')
- if add_and_check_final('MaxPool_3a_3x3', net): return net, end_points
- # 73 x 73 x 80
- net = slim.conv2d(net, 80, 1, padding=padding,
- scope='Conv2d_3b_1x1')
- if add_and_check_final('Conv2d_3b_1x1', net): return net, end_points
- # 71 x 71 x 192
- net = slim.conv2d(net, 192, 3, padding=padding,
- scope='Conv2d_4a_3x3')
- if add_and_check_final('Conv2d_4a_3x3', net): return net, end_points
- # 35 x 35 x 192
- net = slim.max_pool2d(net, 3, stride=2, padding=padding,
- scope='MaxPool_5a_3x3')
- if add_and_check_final('MaxPool_5a_3x3', net): return net, end_points
- # 35 x 35 x 320
- with tf.variable_scope('Mixed_5b'):
- with tf.variable_scope('Branch_0'):
- tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
- with tf.variable_scope('Branch_1'):
- tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1')
- tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5,
- scope='Conv2d_0b_5x5')
- with tf.variable_scope('Branch_2'):
- tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1')
- tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3,
- scope='Conv2d_0b_3x3')
- tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3,
- scope='Conv2d_0c_3x3')
- with tf.variable_scope('Branch_3'):
- tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME',
- scope='AvgPool_0a_3x3')
- tower_pool_1 = slim.conv2d(tower_pool, 64, 1,
- scope='Conv2d_0b_1x1')
- net = tf.concat(
- [tower_conv, tower_conv1_1, tower_conv2_2, tower_pool_1], 3)
- if add_and_check_final('Mixed_5b', net): return net, end_points
- # TODO(alemi): Register intermediate endpoints
- net = slim.repeat(net, 10, block35, scale=0.17,
- activation_fn=activation_fn)
- # 17 x 17 x 1088 if output_stride == 8,
- # 33 x 33 x 1088 if output_stride == 16
- use_atrous = output_stride == 8
- with tf.variable_scope('Mixed_6a'):
- with tf.variable_scope('Branch_0'):
- tower_conv = slim.conv2d(net, 384, 3, stride=1 if use_atrous else 2,
- padding=padding,
- scope='Conv2d_1a_3x3')
- with tf.variable_scope('Branch_1'):
- tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
- tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3,
- scope='Conv2d_0b_3x3')
- tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3,
- stride=1 if use_atrous else 2,
- padding=padding,
- scope='Conv2d_1a_3x3')
- with tf.variable_scope('Branch_2'):
- tower_pool = slim.max_pool2d(net, 3, stride=1 if use_atrous else 2,
- padding=padding,
- scope='MaxPool_1a_3x3')
- net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)
- if add_and_check_final('Mixed_6a', net): return net, end_points
- # TODO(alemi): register intermediate endpoints
- with slim.arg_scope([slim.conv2d], rate=2 if use_atrous else 1):
- net = slim.repeat(net, 20, block17, scale=0.10,
- activation_fn=activation_fn)
- if add_and_check_final('PreAuxLogits', net): return net, end_points
- if output_stride == 8:
- # TODO(gpapan): Properly support output_stride for the rest of the net.
- raise ValueError('output_stride==8 is only supported up to the '
- 'PreAuxlogits end_point for now.')
- # 8 x 8 x 2080
- with tf.variable_scope('Mixed_7a'):
- with tf.variable_scope('Branch_0'):
- tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
- tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
- padding=padding,
- scope='Conv2d_1a_3x3')
- with tf.variable_scope('Branch_1'):
- tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
- tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2,
- padding=padding,
- scope='Conv2d_1a_3x3')
- with tf.variable_scope('Branch_2'):
- tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
- tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
- scope='Conv2d_0b_3x3')
- tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2,
- padding=padding,
- scope='Conv2d_1a_3x3')
- with tf.variable_scope('Branch_3'):
- tower_pool = slim.max_pool2d(net, 3, stride=2,
- padding=padding,
- scope='MaxPool_1a_3x3')
- net = tf.concat(
- [tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool], 3)
- if add_and_check_final('Mixed_7a', net): return net, end_points
- # TODO(alemi): register intermediate endpoints
- net = slim.repeat(net, 9, block8, scale=0.20, activation_fn=activation_fn)
- net = block8(net, activation_fn=None)
- # 8 x 8 x 1536
- net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
- if add_and_check_final('Conv2d_7b_1x1', net): return net, end_points
- raise ValueError('final_endpoint (%s) not recognized', final_endpoint)
- def inception_resnet_v2(inputs, num_classes=1001, is_training=True,
- dropout_keep_prob=0.8,
- reuse=None,
- scope='InceptionResnetV2',
- create_aux_logits=True,
- activation_fn=tf.nn.relu):
- """Creates the Inception Resnet V2 model.
- Args:
- inputs: a 4-D tensor of size [batch_size, height, width, 3].
- Dimension batch_size may be undefined. If create_aux_logits is false,
- also height and width may be undefined.
- num_classes: number of predicted classes. If 0 or None, the logits layer
- is omitted and the input features to the logits layer (before dropout)
- are returned instead.
- is_training: whether is training or not.
- dropout_keep_prob: float, the fraction to keep before final layer.
- reuse: whether or not the network and its variables should be reused. To be
- able to reuse 'scope' must be given.
- scope: Optional variable_scope.
- create_aux_logits: Whether to include the auxilliary logits.
- activation_fn: Activation function for conv2d.
- Returns:
- net: the output of the logits layer (if num_classes is a non-zero integer),
- or the non-dropped-out input to the logits layer (if num_classes is 0 or
- None).
- end_points: the set of end_points from the inception model.
- """
- end_points = {}
- with tf.variable_scope(scope, 'InceptionResnetV2', [inputs],
- reuse=reuse) as scope:
- with slim.arg_scope([slim.batch_norm, slim.dropout],
- is_training=is_training):
- net, end_points = inception_resnet_v2_base(inputs, scope=scope,
- activation_fn=activation_fn)
- if create_aux_logits and num_classes:
- with tf.variable_scope('AuxLogits'):
- aux = end_points['PreAuxLogits']
- aux = slim.avg_pool2d(aux, 5, stride=3, padding='VALID',
- scope='Conv2d_1a_3x3')
- aux = slim.conv2d(aux, 128, 1, scope='Conv2d_1b_1x1')
- aux = slim.conv2d(aux, 768, aux.get_shape()[1:3],
- padding='VALID', scope='Conv2d_2a_5x5')
- aux = slim.flatten(aux)
- aux = slim.fully_connected(aux, num_classes, activation_fn=None,
- scope='Logits')
- end_points['AuxLogits'] = aux
- with tf.variable_scope('Logits'):
- # TODO(sguada,arnoegw): Consider adding a parameter global_pool which
- # can be set to False to disable pooling here (as in resnet_*()).
- kernel_size = net.get_shape()[1:3]
- if kernel_size.is_fully_defined():
- net = slim.avg_pool2d(net, kernel_size, padding='VALID',
- scope='AvgPool_1a_8x8')
- else:
- net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
- end_points['global_pool'] = net
- if not num_classes:
- return net, end_points
- net = slim.flatten(net)
- net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
- scope='Dropout')
- end_points['PreLogitsFlatten'] = net
- logits = slim.fully_connected(net, num_classes, activation_fn=None,
- scope='Logits')
- end_points['Logits'] = logits
- end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions')
- return logits, end_points
- inception_resnet_v2.default_image_size = 299
- def inception_resnet_v2_arg_scope(weight_decay=0.00004,
- batch_norm_decay=0.9997,
- batch_norm_epsilon=0.001,
- activation_fn=tf.nn.relu):
- """Returns the scope with the default parameters for inception_resnet_v2.
- Args:
- weight_decay: the weight decay for weights variables.
- batch_norm_decay: decay for the moving average of batch_norm momentums.
- batch_norm_epsilon: small float added to variance to avoid dividing by zero.
- activation_fn: Activation function for conv2d.
- Returns:
- a arg_scope with the parameters needed for inception_resnet_v2.
- """
- # Set weight_decay for weights in conv2d and fully_connected layers.
- with slim.arg_scope([slim.conv2d, slim.fully_connected],
- weights_regularizer=slim.l2_regularizer(weight_decay),
- biases_regularizer=slim.l2_regularizer(weight_decay)):
- batch_norm_params = {
- 'decay': batch_norm_decay,
- 'epsilon': batch_norm_epsilon,
- 'fused': None, # Use fused batch norm if possible.
- }
- # Set activation_fn and parameters for batch_norm.
- with slim.arg_scope([slim.conv2d], activation_fn=activation_fn,
- normalizer_fn=slim.batch_norm,
- normalizer_params=batch_norm_params) as scope:
- return scope
|