123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for slim.nets.alexnet."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from nets import alexnet
- slim = tf.contrib.slim
- class AlexnetV2Test(tf.test.TestCase):
- def testBuild(self):
- batch_size = 5
- height, width = 224, 224
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, _ = alexnet.alexnet_v2(inputs, num_classes)
- self.assertEquals(logits.op.name, 'alexnet_v2/fc8/squeezed')
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- def testFullyConvolutional(self):
- batch_size = 1
- height, width = 300, 400
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, _ = alexnet.alexnet_v2(inputs, num_classes, spatial_squeeze=False)
- self.assertEquals(logits.op.name, 'alexnet_v2/fc8/BiasAdd')
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, 4, 7, num_classes])
- def testGlobalPool(self):
- batch_size = 1
- height, width = 300, 400
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, _ = alexnet.alexnet_v2(inputs, num_classes, spatial_squeeze=False,
- global_pool=True)
- self.assertEquals(logits.op.name, 'alexnet_v2/fc8/BiasAdd')
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, 1, 1, num_classes])
- def testEndPoints(self):
- batch_size = 5
- height, width = 224, 224
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- _, end_points = alexnet.alexnet_v2(inputs, num_classes)
- expected_names = ['alexnet_v2/conv1',
- 'alexnet_v2/pool1',
- 'alexnet_v2/conv2',
- 'alexnet_v2/pool2',
- 'alexnet_v2/conv3',
- 'alexnet_v2/conv4',
- 'alexnet_v2/conv5',
- 'alexnet_v2/pool5',
- 'alexnet_v2/fc6',
- 'alexnet_v2/fc7',
- 'alexnet_v2/fc8'
- ]
- self.assertSetEqual(set(end_points.keys()), set(expected_names))
- def testNoClasses(self):
- batch_size = 5
- height, width = 224, 224
- num_classes = None
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- net, end_points = alexnet.alexnet_v2(inputs, num_classes)
- expected_names = ['alexnet_v2/conv1',
- 'alexnet_v2/pool1',
- 'alexnet_v2/conv2',
- 'alexnet_v2/pool2',
- 'alexnet_v2/conv3',
- 'alexnet_v2/conv4',
- 'alexnet_v2/conv5',
- 'alexnet_v2/pool5',
- 'alexnet_v2/fc6',
- 'alexnet_v2/fc7'
- ]
- self.assertSetEqual(set(end_points.keys()), set(expected_names))
- self.assertTrue(net.op.name.startswith('alexnet_v2/fc7'))
- self.assertListEqual(net.get_shape().as_list(),
- [batch_size, 1, 1, 4096])
- def testModelVariables(self):
- batch_size = 5
- height, width = 224, 224
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- alexnet.alexnet_v2(inputs, num_classes)
- expected_names = ['alexnet_v2/conv1/weights',
- 'alexnet_v2/conv1/biases',
- 'alexnet_v2/conv2/weights',
- 'alexnet_v2/conv2/biases',
- 'alexnet_v2/conv3/weights',
- 'alexnet_v2/conv3/biases',
- 'alexnet_v2/conv4/weights',
- 'alexnet_v2/conv4/biases',
- 'alexnet_v2/conv5/weights',
- 'alexnet_v2/conv5/biases',
- 'alexnet_v2/fc6/weights',
- 'alexnet_v2/fc6/biases',
- 'alexnet_v2/fc7/weights',
- 'alexnet_v2/fc7/biases',
- 'alexnet_v2/fc8/weights',
- 'alexnet_v2/fc8/biases',
- ]
- model_variables = [v.op.name for v in slim.get_model_variables()]
- self.assertSetEqual(set(model_variables), set(expected_names))
- def testEvaluation(self):
- batch_size = 2
- height, width = 224, 224
- num_classes = 1000
- with self.test_session():
- eval_inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False)
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- predictions = tf.argmax(logits, 1)
- self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
- def testTrainEvalWithReuse(self):
- train_batch_size = 2
- eval_batch_size = 1
- train_height, train_width = 224, 224
- eval_height, eval_width = 300, 400
- num_classes = 1000
- with self.test_session():
- train_inputs = tf.random_uniform(
- (train_batch_size, train_height, train_width, 3))
- logits, _ = alexnet.alexnet_v2(train_inputs)
- self.assertListEqual(logits.get_shape().as_list(),
- [train_batch_size, num_classes])
- tf.get_variable_scope().reuse_variables()
- eval_inputs = tf.random_uniform(
- (eval_batch_size, eval_height, eval_width, 3))
- logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False,
- spatial_squeeze=False)
- self.assertListEqual(logits.get_shape().as_list(),
- [eval_batch_size, 4, 7, num_classes])
- logits = tf.reduce_mean(logits, [1, 2])
- predictions = tf.argmax(logits, 1)
- self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
- def testForward(self):
- batch_size = 1
- height, width = 224, 224
- with self.test_session() as sess:
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, _ = alexnet.alexnet_v2(inputs)
- sess.run(tf.global_variables_initializer())
- output = sess.run(logits)
- self.assertTrue(output.any())
- if __name__ == '__main__':
- tf.test.main()
|