| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 | 
							- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
 
- #
 
- # Licensed under the Apache License, Version 2.0 (the "License");
 
- # you may not use this file except in compliance with the License.
 
- # You may obtain a copy of the License at
 
- #
 
- # http://www.apache.org/licenses/LICENSE-2.0
 
- #
 
- # Unless required by applicable law or agreed to in writing, software
 
- # distributed under the License is distributed on an "AS IS" BASIS,
 
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- # See the License for the specific language governing permissions and
 
- # limitations under the License.
 
- # ==============================================================================
 
- """Tests for slim.nasnet."""
 
- from __future__ import absolute_import
 
- from __future__ import division
 
- from __future__ import print_function
 
- import tensorflow as tf
 
- from nets.nasnet import nasnet
 
- slim = tf.contrib.slim
 
- class NASNetTest(tf.test.TestCase):
 
-   def testBuildLogitsCifarModel(self):
 
-     batch_size = 5
 
-     height, width = 32, 32
 
-     num_classes = 10
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
 
-       logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
 
-     auxlogits = end_points['AuxLogits']
 
-     predictions = end_points['Predictions']
 
-     self.assertListEqual(auxlogits.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-     self.assertListEqual(logits.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-     self.assertListEqual(predictions.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-   def testBuildLogitsMobileModel(self):
 
-     batch_size = 5
 
-     height, width = 224, 224
 
-     num_classes = 1000
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
 
-       logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
 
-     auxlogits = end_points['AuxLogits']
 
-     predictions = end_points['Predictions']
 
-     self.assertListEqual(auxlogits.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-     self.assertListEqual(logits.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-     self.assertListEqual(predictions.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-   def testBuildLogitsLargeModel(self):
 
-     batch_size = 5
 
-     height, width = 331, 331
 
-     num_classes = 1000
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
 
-       logits, end_points = nasnet.build_nasnet_large(inputs, num_classes)
 
-     auxlogits = end_points['AuxLogits']
 
-     predictions = end_points['Predictions']
 
-     self.assertListEqual(auxlogits.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-     self.assertListEqual(logits.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-     self.assertListEqual(predictions.get_shape().as_list(),
 
-                          [batch_size, num_classes])
 
-   def testBuildPreLogitsCifarModel(self):
 
-     batch_size = 5
 
-     height, width = 32, 32
 
-     num_classes = None
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
 
-       net, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
 
-     self.assertFalse('AuxLogits' in end_points)
 
-     self.assertFalse('Predictions' in end_points)
 
-     self.assertTrue(net.op.name.startswith('final_layer/Mean'))
 
-     self.assertListEqual(net.get_shape().as_list(), [batch_size, 768])
 
-   def testBuildPreLogitsMobileModel(self):
 
-     batch_size = 5
 
-     height, width = 224, 224
 
-     num_classes = None
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
 
-       net, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
 
-     self.assertFalse('AuxLogits' in end_points)
 
-     self.assertFalse('Predictions' in end_points)
 
-     self.assertTrue(net.op.name.startswith('final_layer/Mean'))
 
-     self.assertListEqual(net.get_shape().as_list(), [batch_size, 1056])
 
-   def testBuildPreLogitsLargeModel(self):
 
-     batch_size = 5
 
-     height, width = 331, 331
 
-     num_classes = None
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
 
-       net, end_points = nasnet.build_nasnet_large(inputs, num_classes)
 
-     self.assertFalse('AuxLogits' in end_points)
 
-     self.assertFalse('Predictions' in end_points)
 
-     self.assertTrue(net.op.name.startswith('final_layer/Mean'))
 
-     self.assertListEqual(net.get_shape().as_list(), [batch_size, 4032])
 
-   def testAllEndPointsShapesCifarModel(self):
 
-     batch_size = 5
 
-     height, width = 32, 32
 
-     num_classes = 10
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
 
-       _, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
 
-     endpoints_shapes = {'Stem': [batch_size, 32, 32, 96],
 
-                         'Cell_0': [batch_size, 32, 32, 192],
 
-                         'Cell_1': [batch_size, 32, 32, 192],
 
-                         'Cell_2': [batch_size, 32, 32, 192],
 
-                         'Cell_3': [batch_size, 32, 32, 192],
 
-                         'Cell_4': [batch_size, 32, 32, 192],
 
-                         'Cell_5': [batch_size, 32, 32, 192],
 
-                         'Cell_6': [batch_size, 16, 16, 384],
 
-                         'Cell_7': [batch_size, 16, 16, 384],
 
-                         'Cell_8': [batch_size, 16, 16, 384],
 
-                         'Cell_9': [batch_size, 16, 16, 384],
 
-                         'Cell_10': [batch_size, 16, 16, 384],
 
-                         'Cell_11': [batch_size, 16, 16, 384],
 
-                         'Cell_12': [batch_size, 8, 8, 768],
 
-                         'Cell_13': [batch_size, 8, 8, 768],
 
-                         'Cell_14': [batch_size, 8, 8, 768],
 
-                         'Cell_15': [batch_size, 8, 8, 768],
 
-                         'Cell_16': [batch_size, 8, 8, 768],
 
-                         'Cell_17': [batch_size, 8, 8, 768],
 
-                         'Reduction_Cell_0': [batch_size, 16, 16, 256],
 
-                         'Reduction_Cell_1': [batch_size, 8, 8, 512],
 
-                         'global_pool': [batch_size, 768],
 
-                         # Logits and predictions
 
-                         'AuxLogits': [batch_size, num_classes],
 
-                         'Logits': [batch_size, num_classes],
 
-                         'Predictions': [batch_size, num_classes]}
 
-     self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
 
-     for endpoint_name in endpoints_shapes:
 
-       tf.logging.info('Endpoint name: {}'.format(endpoint_name))
 
-       expected_shape = endpoints_shapes[endpoint_name]
 
-       self.assertTrue(endpoint_name in end_points)
 
-       self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
 
-                            expected_shape)
 
-   def testAllEndPointsShapesMobileModel(self):
 
-     batch_size = 5
 
-     height, width = 224, 224
 
-     num_classes = 1000
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
 
-       _, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
 
-     endpoints_shapes = {'Stem': [batch_size, 28, 28, 88],
 
-                         'Cell_0': [batch_size, 28, 28, 264],
 
-                         'Cell_1': [batch_size, 28, 28, 264],
 
-                         'Cell_2': [batch_size, 28, 28, 264],
 
-                         'Cell_3': [batch_size, 28, 28, 264],
 
-                         'Cell_4': [batch_size, 14, 14, 528],
 
-                         'Cell_5': [batch_size, 14, 14, 528],
 
-                         'Cell_6': [batch_size, 14, 14, 528],
 
-                         'Cell_7': [batch_size, 14, 14, 528],
 
-                         'Cell_8': [batch_size, 7, 7, 1056],
 
-                         'Cell_9': [batch_size, 7, 7, 1056],
 
-                         'Cell_10': [batch_size, 7, 7, 1056],
 
-                         'Cell_11': [batch_size, 7, 7, 1056],
 
-                         'Reduction_Cell_0': [batch_size, 14, 14, 352],
 
-                         'Reduction_Cell_1': [batch_size, 7, 7, 704],
 
-                         'global_pool': [batch_size, 1056],
 
-                         # Logits and predictions
 
-                         'AuxLogits': [batch_size, num_classes],
 
-                         'Logits': [batch_size, num_classes],
 
-                         'Predictions': [batch_size, num_classes]}
 
-     self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
 
-     for endpoint_name in endpoints_shapes:
 
-       tf.logging.info('Endpoint name: {}'.format(endpoint_name))
 
-       expected_shape = endpoints_shapes[endpoint_name]
 
-       self.assertTrue(endpoint_name in end_points)
 
-       self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
 
-                            expected_shape)
 
-   def testAllEndPointsShapesLargeModel(self):
 
-     batch_size = 5
 
-     height, width = 331, 331
 
-     num_classes = 1000
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
 
-       _, end_points = nasnet.build_nasnet_large(inputs, num_classes)
 
-     endpoints_shapes = {'Stem': [batch_size, 42, 42, 336],
 
-                         'Cell_0': [batch_size, 42, 42, 1008],
 
-                         'Cell_1': [batch_size, 42, 42, 1008],
 
-                         'Cell_2': [batch_size, 42, 42, 1008],
 
-                         'Cell_3': [batch_size, 42, 42, 1008],
 
-                         'Cell_4': [batch_size, 42, 42, 1008],
 
-                         'Cell_5': [batch_size, 42, 42, 1008],
 
-                         'Cell_6': [batch_size, 21, 21, 2016],
 
-                         'Cell_7': [batch_size, 21, 21, 2016],
 
-                         'Cell_8': [batch_size, 21, 21, 2016],
 
-                         'Cell_9': [batch_size, 21, 21, 2016],
 
-                         'Cell_10': [batch_size, 21, 21, 2016],
 
-                         'Cell_11': [batch_size, 21, 21, 2016],
 
-                         'Cell_12': [batch_size, 11, 11, 4032],
 
-                         'Cell_13': [batch_size, 11, 11, 4032],
 
-                         'Cell_14': [batch_size, 11, 11, 4032],
 
-                         'Cell_15': [batch_size, 11, 11, 4032],
 
-                         'Cell_16': [batch_size, 11, 11, 4032],
 
-                         'Cell_17': [batch_size, 11, 11, 4032],
 
-                         'Reduction_Cell_0': [batch_size, 21, 21, 1344],
 
-                         'Reduction_Cell_1': [batch_size, 11, 11, 2688],
 
-                         'global_pool': [batch_size, 4032],
 
-                         # Logits and predictions
 
-                         'AuxLogits': [batch_size, num_classes],
 
-                         'Logits': [batch_size, num_classes],
 
-                         'Predictions': [batch_size, num_classes]}
 
-     self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
 
-     for endpoint_name in endpoints_shapes:
 
-       tf.logging.info('Endpoint name: {}'.format(endpoint_name))
 
-       expected_shape = endpoints_shapes[endpoint_name]
 
-       self.assertTrue(endpoint_name in end_points)
 
-       self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
 
-                            expected_shape)
 
-   def testVariablesSetDeviceMobileModel(self):
 
-     batch_size = 5
 
-     height, width = 224, 224
 
-     num_classes = 1000
 
-     inputs = tf.random_uniform((batch_size, height, width, 3))
 
-     tf.train.create_global_step()
 
-     # Force all Variables to reside on the device.
 
-     with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
 
-       with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
 
-         nasnet.build_nasnet_mobile(inputs, num_classes)
 
-     with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
 
-       with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
 
-         nasnet.build_nasnet_mobile(inputs, num_classes)
 
-     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
 
-       self.assertDeviceEqual(v.device, '/cpu:0')
 
-     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
 
-       self.assertDeviceEqual(v.device, '/gpu:0')
 
-   def testUnknownBatchSizeMobileModel(self):
 
-     batch_size = 1
 
-     height, width = 224, 224
 
-     num_classes = 1000
 
-     with self.test_session() as sess:
 
-       inputs = tf.placeholder(tf.float32, (None, height, width, 3))
 
-       with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
 
-         logits, _ = nasnet.build_nasnet_mobile(inputs, num_classes)
 
-       self.assertListEqual(logits.get_shape().as_list(),
 
-                            [None, num_classes])
 
-       images = tf.random_uniform((batch_size, height, width, 3))
 
-       sess.run(tf.global_variables_initializer())
 
-       output = sess.run(logits, {inputs: images.eval()})
 
-       self.assertEquals(output.shape, (batch_size, num_classes))
 
-   def testEvaluationMobileModel(self):
 
-     batch_size = 2
 
-     height, width = 224, 224
 
-     num_classes = 1000
 
-     with self.test_session() as sess:
 
-       eval_inputs = tf.random_uniform((batch_size, height, width, 3))
 
-       with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
 
-         logits, _ = nasnet.build_nasnet_mobile(eval_inputs,
 
-                                                num_classes,
 
-                                                is_training=False)
 
-       predictions = tf.argmax(logits, 1)
 
-       sess.run(tf.global_variables_initializer())
 
-       output = sess.run(predictions)
 
-       self.assertEquals(output.shape, (batch_size,))
 
- if __name__ == '__main__':
 
-   tf.test.main()
 
 
  |