123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for slim.nasnet."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from nets.nasnet import nasnet
- slim = tf.contrib.slim
- class NASNetTest(tf.test.TestCase):
- def testBuildLogitsCifarModel(self):
- batch_size = 5
- height, width = 32, 32
- num_classes = 10
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
- logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
- auxlogits = end_points['AuxLogits']
- predictions = end_points['Predictions']
- self.assertListEqual(auxlogits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertListEqual(predictions.get_shape().as_list(),
- [batch_size, num_classes])
- def testBuildLogitsMobileModel(self):
- batch_size = 5
- height, width = 224, 224
- num_classes = 1000
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
- logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
- auxlogits = end_points['AuxLogits']
- predictions = end_points['Predictions']
- self.assertListEqual(auxlogits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertListEqual(predictions.get_shape().as_list(),
- [batch_size, num_classes])
- def testBuildLogitsLargeModel(self):
- batch_size = 5
- height, width = 331, 331
- num_classes = 1000
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
- logits, end_points = nasnet.build_nasnet_large(inputs, num_classes)
- auxlogits = end_points['AuxLogits']
- predictions = end_points['Predictions']
- self.assertListEqual(auxlogits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertListEqual(predictions.get_shape().as_list(),
- [batch_size, num_classes])
- def testBuildPreLogitsCifarModel(self):
- batch_size = 5
- height, width = 32, 32
- num_classes = None
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
- net, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
- self.assertFalse('AuxLogits' in end_points)
- self.assertFalse('Predictions' in end_points)
- self.assertTrue(net.op.name.startswith('final_layer/Mean'))
- self.assertListEqual(net.get_shape().as_list(), [batch_size, 768])
- def testBuildPreLogitsMobileModel(self):
- batch_size = 5
- height, width = 224, 224
- num_classes = None
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
- net, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
- self.assertFalse('AuxLogits' in end_points)
- self.assertFalse('Predictions' in end_points)
- self.assertTrue(net.op.name.startswith('final_layer/Mean'))
- self.assertListEqual(net.get_shape().as_list(), [batch_size, 1056])
- def testBuildPreLogitsLargeModel(self):
- batch_size = 5
- height, width = 331, 331
- num_classes = None
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
- net, end_points = nasnet.build_nasnet_large(inputs, num_classes)
- self.assertFalse('AuxLogits' in end_points)
- self.assertFalse('Predictions' in end_points)
- self.assertTrue(net.op.name.startswith('final_layer/Mean'))
- self.assertListEqual(net.get_shape().as_list(), [batch_size, 4032])
- def testAllEndPointsShapesCifarModel(self):
- batch_size = 5
- height, width = 32, 32
- num_classes = 10
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
- _, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
- endpoints_shapes = {'Stem': [batch_size, 32, 32, 96],
- 'Cell_0': [batch_size, 32, 32, 192],
- 'Cell_1': [batch_size, 32, 32, 192],
- 'Cell_2': [batch_size, 32, 32, 192],
- 'Cell_3': [batch_size, 32, 32, 192],
- 'Cell_4': [batch_size, 32, 32, 192],
- 'Cell_5': [batch_size, 32, 32, 192],
- 'Cell_6': [batch_size, 16, 16, 384],
- 'Cell_7': [batch_size, 16, 16, 384],
- 'Cell_8': [batch_size, 16, 16, 384],
- 'Cell_9': [batch_size, 16, 16, 384],
- 'Cell_10': [batch_size, 16, 16, 384],
- 'Cell_11': [batch_size, 16, 16, 384],
- 'Cell_12': [batch_size, 8, 8, 768],
- 'Cell_13': [batch_size, 8, 8, 768],
- 'Cell_14': [batch_size, 8, 8, 768],
- 'Cell_15': [batch_size, 8, 8, 768],
- 'Cell_16': [batch_size, 8, 8, 768],
- 'Cell_17': [batch_size, 8, 8, 768],
- 'Reduction_Cell_0': [batch_size, 16, 16, 256],
- 'Reduction_Cell_1': [batch_size, 8, 8, 512],
- 'global_pool': [batch_size, 768],
- # Logits and predictions
- 'AuxLogits': [batch_size, num_classes],
- 'Logits': [batch_size, num_classes],
- 'Predictions': [batch_size, num_classes]}
- self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
- for endpoint_name in endpoints_shapes:
- tf.logging.info('Endpoint name: {}'.format(endpoint_name))
- expected_shape = endpoints_shapes[endpoint_name]
- self.assertTrue(endpoint_name in end_points)
- self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
- expected_shape)
- def testAllEndPointsShapesMobileModel(self):
- batch_size = 5
- height, width = 224, 224
- num_classes = 1000
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
- _, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
- endpoints_shapes = {'Stem': [batch_size, 28, 28, 88],
- 'Cell_0': [batch_size, 28, 28, 264],
- 'Cell_1': [batch_size, 28, 28, 264],
- 'Cell_2': [batch_size, 28, 28, 264],
- 'Cell_3': [batch_size, 28, 28, 264],
- 'Cell_4': [batch_size, 14, 14, 528],
- 'Cell_5': [batch_size, 14, 14, 528],
- 'Cell_6': [batch_size, 14, 14, 528],
- 'Cell_7': [batch_size, 14, 14, 528],
- 'Cell_8': [batch_size, 7, 7, 1056],
- 'Cell_9': [batch_size, 7, 7, 1056],
- 'Cell_10': [batch_size, 7, 7, 1056],
- 'Cell_11': [batch_size, 7, 7, 1056],
- 'Reduction_Cell_0': [batch_size, 14, 14, 352],
- 'Reduction_Cell_1': [batch_size, 7, 7, 704],
- 'global_pool': [batch_size, 1056],
- # Logits and predictions
- 'AuxLogits': [batch_size, num_classes],
- 'Logits': [batch_size, num_classes],
- 'Predictions': [batch_size, num_classes]}
- self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
- for endpoint_name in endpoints_shapes:
- tf.logging.info('Endpoint name: {}'.format(endpoint_name))
- expected_shape = endpoints_shapes[endpoint_name]
- self.assertTrue(endpoint_name in end_points)
- self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
- expected_shape)
- def testAllEndPointsShapesLargeModel(self):
- batch_size = 5
- height, width = 331, 331
- num_classes = 1000
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
- _, end_points = nasnet.build_nasnet_large(inputs, num_classes)
- endpoints_shapes = {'Stem': [batch_size, 42, 42, 336],
- 'Cell_0': [batch_size, 42, 42, 1008],
- 'Cell_1': [batch_size, 42, 42, 1008],
- 'Cell_2': [batch_size, 42, 42, 1008],
- 'Cell_3': [batch_size, 42, 42, 1008],
- 'Cell_4': [batch_size, 42, 42, 1008],
- 'Cell_5': [batch_size, 42, 42, 1008],
- 'Cell_6': [batch_size, 21, 21, 2016],
- 'Cell_7': [batch_size, 21, 21, 2016],
- 'Cell_8': [batch_size, 21, 21, 2016],
- 'Cell_9': [batch_size, 21, 21, 2016],
- 'Cell_10': [batch_size, 21, 21, 2016],
- 'Cell_11': [batch_size, 21, 21, 2016],
- 'Cell_12': [batch_size, 11, 11, 4032],
- 'Cell_13': [batch_size, 11, 11, 4032],
- 'Cell_14': [batch_size, 11, 11, 4032],
- 'Cell_15': [batch_size, 11, 11, 4032],
- 'Cell_16': [batch_size, 11, 11, 4032],
- 'Cell_17': [batch_size, 11, 11, 4032],
- 'Reduction_Cell_0': [batch_size, 21, 21, 1344],
- 'Reduction_Cell_1': [batch_size, 11, 11, 2688],
- 'global_pool': [batch_size, 4032],
- # Logits and predictions
- 'AuxLogits': [batch_size, num_classes],
- 'Logits': [batch_size, num_classes],
- 'Predictions': [batch_size, num_classes]}
- self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
- for endpoint_name in endpoints_shapes:
- tf.logging.info('Endpoint name: {}'.format(endpoint_name))
- expected_shape = endpoints_shapes[endpoint_name]
- self.assertTrue(endpoint_name in end_points)
- self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
- expected_shape)
- def testVariablesSetDeviceMobileModel(self):
- batch_size = 5
- height, width = 224, 224
- num_classes = 1000
- inputs = tf.random_uniform((batch_size, height, width, 3))
- tf.train.create_global_step()
- # Force all Variables to reside on the device.
- with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
- with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
- nasnet.build_nasnet_mobile(inputs, num_classes)
- with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
- with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
- nasnet.build_nasnet_mobile(inputs, num_classes)
- for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
- self.assertDeviceEqual(v.device, '/cpu:0')
- for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
- self.assertDeviceEqual(v.device, '/gpu:0')
- def testUnknownBatchSizeMobileModel(self):
- batch_size = 1
- height, width = 224, 224
- num_classes = 1000
- with self.test_session() as sess:
- inputs = tf.placeholder(tf.float32, (None, height, width, 3))
- with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
- logits, _ = nasnet.build_nasnet_mobile(inputs, num_classes)
- self.assertListEqual(logits.get_shape().as_list(),
- [None, num_classes])
- images = tf.random_uniform((batch_size, height, width, 3))
- sess.run(tf.global_variables_initializer())
- output = sess.run(logits, {inputs: images.eval()})
- self.assertEquals(output.shape, (batch_size, num_classes))
- def testEvaluationMobileModel(self):
- batch_size = 2
- height, width = 224, 224
- num_classes = 1000
- with self.test_session() as sess:
- eval_inputs = tf.random_uniform((batch_size, height, width, 3))
- with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
- logits, _ = nasnet.build_nasnet_mobile(eval_inputs,
- num_classes,
- is_training=False)
- predictions = tf.argmax(logits, 1)
- sess.run(tf.global_variables_initializer())
- output = sess.run(predictions)
- self.assertEquals(output.shape, (batch_size,))
- if __name__ == '__main__':
- tf.test.main()
|