# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tests for pix2pix.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import pix2pix class GeneratorTest(tf.test.TestCase): def test_nonsquare_inputs_raise_exception(self): batch_size = 2 height, width = 240, 320 num_outputs = 4 images = tf.ones((batch_size, height, width, 3)) with self.assertRaises(ValueError): with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): pix2pix.pix2pix_generator( images, num_outputs, upsample_method='nn_upsample_conv') def _reduced_default_blocks(self): """Returns the default blocks, scaled down to make test run faster.""" return [pix2pix.Block(b.num_filters // 32, b.decoder_keep_prob) for b in pix2pix._default_generator_blocks()] def test_output_size_nn_upsample_conv(self): batch_size = 2 height, width = 256, 256 num_outputs = 4 images = tf.ones((batch_size, height, width, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, _ = pix2pix.pix2pix_generator( images, num_outputs, blocks=self._reduced_default_blocks(), upsample_method='nn_upsample_conv') with self.test_session() as session: session.run(tf.global_variables_initializer()) np_outputs = session.run(logits) self.assertListEqual([batch_size, height, width, num_outputs], list(np_outputs.shape)) def test_output_size_conv2d_transpose(self): batch_size = 2 height, width = 256, 256 num_outputs = 4 images = tf.ones((batch_size, height, width, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, _ = pix2pix.pix2pix_generator( images, num_outputs, blocks=self._reduced_default_blocks(), upsample_method='conv2d_transpose') with self.test_session() as session: session.run(tf.global_variables_initializer()) np_outputs = session.run(logits) self.assertListEqual([batch_size, height, width, num_outputs], list(np_outputs.shape)) def test_block_number_dictates_number_of_layers(self): batch_size = 2 height, width = 256, 256 num_outputs = 4 images = tf.ones((batch_size, height, width, 3)) blocks = [ pix2pix.Block(64, 0.5), pix2pix.Block(128, 0), ] with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): _, end_points = pix2pix.pix2pix_generator( images, num_outputs, blocks) num_encoder_layers = 0 num_decoder_layers = 0 for end_point in end_points: if end_point.startswith('encoder'): num_encoder_layers += 1 elif end_point.startswith('decoder'): num_decoder_layers += 1 self.assertEqual(num_encoder_layers, len(blocks)) self.assertEqual(num_decoder_layers, len(blocks)) class DiscriminatorTest(tf.test.TestCase): def _layer_output_size(self, input_size, kernel_size=4, stride=2, pad=2): return (input_size + pad * 2 - kernel_size) // stride + 1 def test_four_layers(self): batch_size = 2 input_size = 256 output_size = self._layer_output_size(input_size) output_size = self._layer_output_size(output_size) output_size = self._layer_output_size(output_size) output_size = self._layer_output_size(output_size, stride=1) output_size = self._layer_output_size(output_size, stride=1) images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, end_points = pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512]) self.assertListEqual([batch_size, output_size, output_size, 1], logits.shape.as_list()) self.assertListEqual([batch_size, output_size, output_size, 1], end_points['predictions'].shape.as_list()) def test_four_layers_no_padding(self): batch_size = 2 input_size = 256 output_size = self._layer_output_size(input_size, pad=0) output_size = self._layer_output_size(output_size, pad=0) output_size = self._layer_output_size(output_size, pad=0) output_size = self._layer_output_size(output_size, stride=1, pad=0) output_size = self._layer_output_size(output_size, stride=1, pad=0) images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, end_points = pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512], padding=0) self.assertListEqual([batch_size, output_size, output_size, 1], logits.shape.as_list()) self.assertListEqual([batch_size, output_size, output_size, 1], end_points['predictions'].shape.as_list()) def test_four_layers_wrog_paddig(self): batch_size = 2 input_size = 256 images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): with self.assertRaises(TypeError): pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512], padding=1.5) def test_four_layers_negative_padding(self): batch_size = 2 input_size = 256 images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): with self.assertRaises(ValueError): pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512], padding=-1) if __name__ == '__main__': tf.test.main()