# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.nets.nasnet.nasnet_utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets.nasnet import nasnet_utils class NasnetUtilsTest(tf.test.TestCase): def testCalcReductionLayers(self): num_cells = 18 num_reduction_layers = 2 reduction_layers = nasnet_utils.calc_reduction_layers( num_cells, num_reduction_layers) self.assertEqual(len(reduction_layers), 2) self.assertEqual(reduction_layers[0], 6) self.assertEqual(reduction_layers[1], 12) def testGetChannelIndex(self): data_formats = ['NHWC', 'NCHW'] for data_format in data_formats: index = nasnet_utils.get_channel_index(data_format) correct_index = 3 if data_format == 'NHWC' else 1 self.assertEqual(index, correct_index) def testGetChannelDim(self): data_formats = ['NHWC', 'NCHW'] shape = [10, 20, 30, 40] for data_format in data_formats: dim = nasnet_utils.get_channel_dim(shape, data_format) correct_dim = shape[3] if data_format == 'NHWC' else shape[1] self.assertEqual(dim, correct_dim) def testGlobalAvgPool(self): data_formats = ['NHWC', 'NCHW'] inputs = tf.placeholder(tf.float32, (5, 10, 20, 10)) for data_format in data_formats: output = nasnet_utils.global_avg_pool( inputs, data_format) self.assertEqual(output.shape, [5, 10]) if __name__ == '__main__': tf.test.main()