12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717 |
- /*
- *
- * bignumber.js v4.1.0
- * A JavaScript library for arbitrary-precision arithmetic.
- * https://github.com/MikeMcl/bignumber.js
- * Copyright (c) 2017 Michael Mclaughlin <M8ch88l@gmail.com>
- * MIT Expat Licence
- *
- */
- var BigNumber,
- isNumeric = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
- mathceil = Math.ceil,
- mathfloor = Math.floor,
- notBool = ' not a boolean or binary digit',
- roundingMode = 'rounding mode',
- tooManyDigits = 'number type has more than 15 significant digits',
- ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_',
- BASE = 1e14,
- LOG_BASE = 14,
- MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1
- // MAX_INT32 = 0x7fffffff, // 2^31 - 1
- POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
- SQRT_BASE = 1e7,
- /*
- * The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
- * the arguments to toExponential, toFixed, toFormat, and toPrecision, beyond which an
- * exception is thrown (if ERRORS is true).
- */
- MAX = 1E9; // 0 to MAX_INT32
- /*
- * Create and return a BigNumber constructor.
- */
- function constructorFactory(config) {
- var div, parseNumeric,
- // id tracks the caller function, so its name can be included in error messages.
- id = 0,
- P = BigNumber.prototype,
- ONE = new BigNumber(1),
- /*************************************** EDITABLE DEFAULTS ****************************************/
- /*
- * The default values below must be integers within the inclusive ranges stated.
- * The values can also be changed at run-time using BigNumber.config.
- */
- // The maximum number of decimal places for operations involving division.
- DECIMAL_PLACES = 20, // 0 to MAX
- /*
- * The rounding mode used when rounding to the above decimal places, and when using
- * toExponential, toFixed, toFormat and toPrecision, and round (default value).
- * UP 0 Away from zero.
- * DOWN 1 Towards zero.
- * CEIL 2 Towards +Infinity.
- * FLOOR 3 Towards -Infinity.
- * HALF_UP 4 Towards nearest neighbour. If equidistant, up.
- * HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.
- * HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.
- * HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.
- * HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
- */
- ROUNDING_MODE = 4, // 0 to 8
- // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
- // The exponent value at and beneath which toString returns exponential notation.
- // Number type: -7
- TO_EXP_NEG = -7, // 0 to -MAX
- // The exponent value at and above which toString returns exponential notation.
- // Number type: 21
- TO_EXP_POS = 21, // 0 to MAX
- // RANGE : [MIN_EXP, MAX_EXP]
- // The minimum exponent value, beneath which underflow to zero occurs.
- // Number type: -324 (5e-324)
- MIN_EXP = -1e7, // -1 to -MAX
- // The maximum exponent value, above which overflow to Infinity occurs.
- // Number type: 308 (1.7976931348623157e+308)
- // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
- MAX_EXP = 1e7, // 1 to MAX
- // Whether BigNumber Errors are ever thrown.
- ERRORS = true, // true or false
- // Change to intValidatorNoErrors if ERRORS is false.
- isValidInt = intValidatorWithErrors, // intValidatorWithErrors/intValidatorNoErrors
- // Whether to use cryptographically-secure random number generation, if available.
- CRYPTO = false, // true or false
- /*
- * The modulo mode used when calculating the modulus: a mod n.
- * The quotient (q = a / n) is calculated according to the corresponding rounding mode.
- * The remainder (r) is calculated as: r = a - n * q.
- *
- * UP 0 The remainder is positive if the dividend is negative, else is negative.
- * DOWN 1 The remainder has the same sign as the dividend.
- * This modulo mode is commonly known as 'truncated division' and is
- * equivalent to (a % n) in JavaScript.
- * FLOOR 3 The remainder has the same sign as the divisor (Python %).
- * HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
- * EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)).
- * The remainder is always positive.
- *
- * The truncated division, floored division, Euclidian division and IEEE 754 remainder
- * modes are commonly used for the modulus operation.
- * Although the other rounding modes can also be used, they may not give useful results.
- */
- MODULO_MODE = 1, // 0 to 9
- // The maximum number of significant digits of the result of the toPower operation.
- // If POW_PRECISION is 0, there will be unlimited significant digits.
- POW_PRECISION = 0, // 0 to MAX
- // The format specification used by the BigNumber.prototype.toFormat method.
- FORMAT = {
- decimalSeparator: '.',
- groupSeparator: ',',
- groupSize: 3,
- secondaryGroupSize: 0,
- fractionGroupSeparator: '\xA0', // non-breaking space
- fractionGroupSize: 0
- };
- /**************************************************************************************************/
- // CONSTRUCTOR
- /*
- * The BigNumber constructor and exported function.
- * Create and return a new instance of a BigNumber object.
- *
- * n {number|string|BigNumber} A numeric value.
- * [b] {number} The base of n. Integer, 2 to 64 inclusive.
- */
- function BigNumber( n, b ) {
- var c, e, i, num, len, str,
- x = this;
- // Enable constructor usage without new.
- if ( !( x instanceof BigNumber ) ) {
- // 'BigNumber() constructor call without new: {n}'
- if (ERRORS) raise( 26, 'constructor call without new', n );
- return new BigNumber( n, b );
- }
- // 'new BigNumber() base not an integer: {b}'
- // 'new BigNumber() base out of range: {b}'
- if ( b == null || !isValidInt( b, 2, 64, id, 'base' ) ) {
- // Duplicate.
- if ( n instanceof BigNumber ) {
- x.s = n.s;
- x.e = n.e;
- x.c = ( n = n.c ) ? n.slice() : n;
- id = 0;
- return;
- }
- if ( ( num = typeof n == 'number' ) && n * 0 == 0 ) {
- x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1;
- // Fast path for integers.
- if ( n === ~~n ) {
- for ( e = 0, i = n; i >= 10; i /= 10, e++ );
- x.e = e;
- x.c = [n];
- id = 0;
- return;
- }
- str = n + '';
- } else {
- if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, num );
- x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1;
- }
- } else {
- b = b | 0;
- str = n + '';
- // Ensure return value is rounded to DECIMAL_PLACES as with other bases.
- // Allow exponential notation to be used with base 10 argument.
- if ( b == 10 ) {
- x = new BigNumber( n instanceof BigNumber ? n : str );
- return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE );
- }
- // Avoid potential interpretation of Infinity and NaN as base 44+ values.
- // Any number in exponential form will fail due to the [Ee][+-].
- if ( ( num = typeof n == 'number' ) && n * 0 != 0 ||
- !( new RegExp( '^-?' + ( c = '[' + ALPHABET.slice( 0, b ) + ']+' ) +
- '(?:\\.' + c + ')?$',b < 37 ? 'i' : '' ) ).test(str) ) {
- return parseNumeric( x, str, num, b );
- }
- if (num) {
- x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1;
- if ( ERRORS && str.replace( /^0\.0*|\./, '' ).length > 15 ) {
- // 'new BigNumber() number type has more than 15 significant digits: {n}'
- raise( id, tooManyDigits, n );
- }
- // Prevent later check for length on converted number.
- num = false;
- } else {
- x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1;
- }
- str = convertBase( str, 10, b, x.s );
- }
- // Decimal point?
- if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' );
- // Exponential form?
- if ( ( i = str.search( /e/i ) ) > 0 ) {
- // Determine exponent.
- if ( e < 0 ) e = i;
- e += +str.slice( i + 1 );
- str = str.substring( 0, i );
- } else if ( e < 0 ) {
- // Integer.
- e = str.length;
- }
- // Determine leading zeros.
- for ( i = 0; str.charCodeAt(i) === 48; i++ );
- // Determine trailing zeros.
- for ( len = str.length; str.charCodeAt(--len) === 48; );
- str = str.slice( i, len + 1 );
- if (str) {
- len = str.length;
- // Disallow numbers with over 15 significant digits if number type.
- // 'new BigNumber() number type has more than 15 significant digits: {n}'
- if ( num && ERRORS && len > 15 && ( n > MAX_SAFE_INTEGER || n !== mathfloor(n) ) ) {
- raise( id, tooManyDigits, x.s * n );
- }
- e = e - i - 1;
- // Overflow?
- if ( e > MAX_EXP ) {
- // Infinity.
- x.c = x.e = null;
- // Underflow?
- } else if ( e < MIN_EXP ) {
- // Zero.
- x.c = [ x.e = 0 ];
- } else {
- x.e = e;
- x.c = [];
- // Transform base
- // e is the base 10 exponent.
- // i is where to slice str to get the first element of the coefficient array.
- i = ( e + 1 ) % LOG_BASE;
- if ( e < 0 ) i += LOG_BASE;
- if ( i < len ) {
- if (i) x.c.push( +str.slice( 0, i ) );
- for ( len -= LOG_BASE; i < len; ) {
- x.c.push( +str.slice( i, i += LOG_BASE ) );
- }
- str = str.slice(i);
- i = LOG_BASE - str.length;
- } else {
- i -= len;
- }
- for ( ; i--; str += '0' );
- x.c.push( +str );
- }
- } else {
- // Zero.
- x.c = [ x.e = 0 ];
- }
- id = 0;
- }
- // CONSTRUCTOR PROPERTIES
- BigNumber.another = constructorFactory;
- BigNumber.ROUND_UP = 0;
- BigNumber.ROUND_DOWN = 1;
- BigNumber.ROUND_CEIL = 2;
- BigNumber.ROUND_FLOOR = 3;
- BigNumber.ROUND_HALF_UP = 4;
- BigNumber.ROUND_HALF_DOWN = 5;
- BigNumber.ROUND_HALF_EVEN = 6;
- BigNumber.ROUND_HALF_CEIL = 7;
- BigNumber.ROUND_HALF_FLOOR = 8;
- BigNumber.EUCLID = 9;
- /*
- * Configure infrequently-changing library-wide settings.
- *
- * Accept an object or an argument list, with one or many of the following properties or
- * parameters respectively:
- *
- * DECIMAL_PLACES {number} Integer, 0 to MAX inclusive
- * ROUNDING_MODE {number} Integer, 0 to 8 inclusive
- * EXPONENTIAL_AT {number|number[]} Integer, -MAX to MAX inclusive or
- * [integer -MAX to 0 incl., 0 to MAX incl.]
- * RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
- * [integer -MAX to -1 incl., integer 1 to MAX incl.]
- * ERRORS {boolean|number} true, false, 1 or 0
- * CRYPTO {boolean|number} true, false, 1 or 0
- * MODULO_MODE {number} 0 to 9 inclusive
- * POW_PRECISION {number} 0 to MAX inclusive
- * FORMAT {object} See BigNumber.prototype.toFormat
- * decimalSeparator {string}
- * groupSeparator {string}
- * groupSize {number}
- * secondaryGroupSize {number}
- * fractionGroupSeparator {string}
- * fractionGroupSize {number}
- *
- * (The values assigned to the above FORMAT object properties are not checked for validity.)
- *
- * E.g.
- * BigNumber.config(20, 4) is equivalent to
- * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
- *
- * Ignore properties/parameters set to null or undefined.
- * Return an object with the properties current values.
- */
- BigNumber.config = BigNumber.set = function () {
- var v, p,
- i = 0,
- r = {},
- a = arguments,
- o = a[0],
- has = o && typeof o == 'object'
- ? function () { if ( o.hasOwnProperty(p) ) return ( v = o[p] ) != null; }
- : function () { if ( a.length > i ) return ( v = a[i++] ) != null; };
- // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
- // 'config() DECIMAL_PLACES not an integer: {v}'
- // 'config() DECIMAL_PLACES out of range: {v}'
- if ( has( p = 'DECIMAL_PLACES' ) && isValidInt( v, 0, MAX, 2, p ) ) {
- DECIMAL_PLACES = v | 0;
- }
- r[p] = DECIMAL_PLACES;
- // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
- // 'config() ROUNDING_MODE not an integer: {v}'
- // 'config() ROUNDING_MODE out of range: {v}'
- if ( has( p = 'ROUNDING_MODE' ) && isValidInt( v, 0, 8, 2, p ) ) {
- ROUNDING_MODE = v | 0;
- }
- r[p] = ROUNDING_MODE;
- // EXPONENTIAL_AT {number|number[]}
- // Integer, -MAX to MAX inclusive or [integer -MAX to 0 inclusive, 0 to MAX inclusive].
- // 'config() EXPONENTIAL_AT not an integer: {v}'
- // 'config() EXPONENTIAL_AT out of range: {v}'
- if ( has( p = 'EXPONENTIAL_AT' ) ) {
- if ( isArray(v) ) {
- if ( isValidInt( v[0], -MAX, 0, 2, p ) && isValidInt( v[1], 0, MAX, 2, p ) ) {
- TO_EXP_NEG = v[0] | 0;
- TO_EXP_POS = v[1] | 0;
- }
- } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) {
- TO_EXP_NEG = -( TO_EXP_POS = ( v < 0 ? -v : v ) | 0 );
- }
- }
- r[p] = [ TO_EXP_NEG, TO_EXP_POS ];
- // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
- // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
- // 'config() RANGE not an integer: {v}'
- // 'config() RANGE cannot be zero: {v}'
- // 'config() RANGE out of range: {v}'
- if ( has( p = 'RANGE' ) ) {
- if ( isArray(v) ) {
- if ( isValidInt( v[0], -MAX, -1, 2, p ) && isValidInt( v[1], 1, MAX, 2, p ) ) {
- MIN_EXP = v[0] | 0;
- MAX_EXP = v[1] | 0;
- }
- } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) {
- if ( v | 0 ) MIN_EXP = -( MAX_EXP = ( v < 0 ? -v : v ) | 0 );
- else if (ERRORS) raise( 2, p + ' cannot be zero', v );
- }
- }
- r[p] = [ MIN_EXP, MAX_EXP ];
- // ERRORS {boolean|number} true, false, 1 or 0.
- // 'config() ERRORS not a boolean or binary digit: {v}'
- if ( has( p = 'ERRORS' ) ) {
- if ( v === !!v || v === 1 || v === 0 ) {
- id = 0;
- isValidInt = ( ERRORS = !!v ) ? intValidatorWithErrors : intValidatorNoErrors;
- } else if (ERRORS) {
- raise( 2, p + notBool, v );
- }
- }
- r[p] = ERRORS;
- // CRYPTO {boolean|number} true, false, 1 or 0.
- // 'config() CRYPTO not a boolean or binary digit: {v}'
- // 'config() crypto unavailable: {crypto}'
- if ( has( p = 'CRYPTO' ) ) {
- if ( v === true || v === false || v === 1 || v === 0 ) {
- if (v) {
- v = typeof crypto == 'undefined';
- if ( !v && crypto && (crypto.getRandomValues || crypto.randomBytes)) {
- CRYPTO = true;
- } else if (ERRORS) {
- raise( 2, 'crypto unavailable', v ? void 0 : crypto );
- } else {
- CRYPTO = false;
- }
- } else {
- CRYPTO = false;
- }
- } else if (ERRORS) {
- raise( 2, p + notBool, v );
- }
- }
- r[p] = CRYPTO;
- // MODULO_MODE {number} Integer, 0 to 9 inclusive.
- // 'config() MODULO_MODE not an integer: {v}'
- // 'config() MODULO_MODE out of range: {v}'
- if ( has( p = 'MODULO_MODE' ) && isValidInt( v, 0, 9, 2, p ) ) {
- MODULO_MODE = v | 0;
- }
- r[p] = MODULO_MODE;
- // POW_PRECISION {number} Integer, 0 to MAX inclusive.
- // 'config() POW_PRECISION not an integer: {v}'
- // 'config() POW_PRECISION out of range: {v}'
- if ( has( p = 'POW_PRECISION' ) && isValidInt( v, 0, MAX, 2, p ) ) {
- POW_PRECISION = v | 0;
- }
- r[p] = POW_PRECISION;
- // FORMAT {object}
- // 'config() FORMAT not an object: {v}'
- if ( has( p = 'FORMAT' ) ) {
- if ( typeof v == 'object' ) {
- FORMAT = v;
- } else if (ERRORS) {
- raise( 2, p + ' not an object', v );
- }
- }
- r[p] = FORMAT;
- return r;
- };
- /*
- * Return a new BigNumber whose value is the maximum of the arguments.
- *
- * arguments {number|string|BigNumber}
- */
- BigNumber.max = function () { return maxOrMin( arguments, P.lt ); };
- /*
- * Return a new BigNumber whose value is the minimum of the arguments.
- *
- * arguments {number|string|BigNumber}
- */
- BigNumber.min = function () { return maxOrMin( arguments, P.gt ); };
- /*
- * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
- * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
- * zeros are produced).
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- *
- * 'random() decimal places not an integer: {dp}'
- * 'random() decimal places out of range: {dp}'
- * 'random() crypto unavailable: {crypto}'
- */
- BigNumber.random = (function () {
- var pow2_53 = 0x20000000000000;
- // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
- // Check if Math.random() produces more than 32 bits of randomness.
- // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
- // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
- var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
- ? function () { return mathfloor( Math.random() * pow2_53 ); }
- : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
- (Math.random() * 0x800000 | 0); };
- return function (dp) {
- var a, b, e, k, v,
- i = 0,
- c = [],
- rand = new BigNumber(ONE);
- dp = dp == null || !isValidInt( dp, 0, MAX, 14 ) ? DECIMAL_PLACES : dp | 0;
- k = mathceil( dp / LOG_BASE );
- if (CRYPTO) {
- // Browsers supporting crypto.getRandomValues.
- if (crypto.getRandomValues) {
- a = crypto.getRandomValues( new Uint32Array( k *= 2 ) );
- for ( ; i < k; ) {
- // 53 bits:
- // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
- // 11111 11111111 11111111 11111111 11100000 00000000 00000000
- // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
- // 11111 11111111 11111111
- // 0x20000 is 2^21.
- v = a[i] * 0x20000 + (a[i + 1] >>> 11);
- // Rejection sampling:
- // 0 <= v < 9007199254740992
- // Probability that v >= 9e15, is
- // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
- if ( v >= 9e15 ) {
- b = crypto.getRandomValues( new Uint32Array(2) );
- a[i] = b[0];
- a[i + 1] = b[1];
- } else {
- // 0 <= v <= 8999999999999999
- // 0 <= (v % 1e14) <= 99999999999999
- c.push( v % 1e14 );
- i += 2;
- }
- }
- i = k / 2;
- // Node.js supporting crypto.randomBytes.
- } else if (crypto.randomBytes) {
- // buffer
- a = crypto.randomBytes( k *= 7 );
- for ( ; i < k; ) {
- // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
- // 0x100000000 is 2^32, 0x1000000 is 2^24
- // 11111 11111111 11111111 11111111 11111111 11111111 11111111
- // 0 <= v < 9007199254740992
- v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) +
- ( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) +
- ( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6];
- if ( v >= 9e15 ) {
- crypto.randomBytes(7).copy( a, i );
- } else {
- // 0 <= (v % 1e14) <= 99999999999999
- c.push( v % 1e14 );
- i += 7;
- }
- }
- i = k / 7;
- } else {
- CRYPTO = false;
- if (ERRORS) raise( 14, 'crypto unavailable', crypto );
- }
- }
- // Use Math.random.
- if (!CRYPTO) {
- for ( ; i < k; ) {
- v = random53bitInt();
- if ( v < 9e15 ) c[i++] = v % 1e14;
- }
- }
- k = c[--i];
- dp %= LOG_BASE;
- // Convert trailing digits to zeros according to dp.
- if ( k && dp ) {
- v = POWS_TEN[LOG_BASE - dp];
- c[i] = mathfloor( k / v ) * v;
- }
- // Remove trailing elements which are zero.
- for ( ; c[i] === 0; c.pop(), i-- );
- // Zero?
- if ( i < 0 ) {
- c = [ e = 0 ];
- } else {
- // Remove leading elements which are zero and adjust exponent accordingly.
- for ( e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);
- // Count the digits of the first element of c to determine leading zeros, and...
- for ( i = 1, v = c[0]; v >= 10; v /= 10, i++);
- // adjust the exponent accordingly.
- if ( i < LOG_BASE ) e -= LOG_BASE - i;
- }
- rand.e = e;
- rand.c = c;
- return rand;
- };
- })();
- // PRIVATE FUNCTIONS
- // Convert a numeric string of baseIn to a numeric string of baseOut.
- function convertBase( str, baseOut, baseIn, sign ) {
- var d, e, k, r, x, xc, y,
- i = str.indexOf( '.' ),
- dp = DECIMAL_PLACES,
- rm = ROUNDING_MODE;
- if ( baseIn < 37 ) str = str.toLowerCase();
- // Non-integer.
- if ( i >= 0 ) {
- k = POW_PRECISION;
- // Unlimited precision.
- POW_PRECISION = 0;
- str = str.replace( '.', '' );
- y = new BigNumber(baseIn);
- x = y.pow( str.length - i );
- POW_PRECISION = k;
- // Convert str as if an integer, then restore the fraction part by dividing the
- // result by its base raised to a power.
- y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e ), 10, baseOut );
- y.e = y.c.length;
- }
- // Convert the number as integer.
- xc = toBaseOut( str, baseIn, baseOut );
- e = k = xc.length;
- // Remove trailing zeros.
- for ( ; xc[--k] == 0; xc.pop() );
- if ( !xc[0] ) return '0';
- if ( i < 0 ) {
- --e;
- } else {
- x.c = xc;
- x.e = e;
- // sign is needed for correct rounding.
- x.s = sign;
- x = div( x, y, dp, rm, baseOut );
- xc = x.c;
- r = x.r;
- e = x.e;
- }
- d = e + dp + 1;
- // The rounding digit, i.e. the digit to the right of the digit that may be rounded up.
- i = xc[d];
- k = baseOut / 2;
- r = r || d < 0 || xc[d + 1] != null;
- r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
- : i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
- rm == ( x.s < 0 ? 8 : 7 ) );
- if ( d < 1 || !xc[0] ) {
- // 1^-dp or 0.
- str = r ? toFixedPoint( '1', -dp ) : '0';
- } else {
- xc.length = d;
- if (r) {
- // Rounding up may mean the previous digit has to be rounded up and so on.
- for ( --baseOut; ++xc[--d] > baseOut; ) {
- xc[d] = 0;
- if ( !d ) {
- ++e;
- xc = [1].concat(xc);
- }
- }
- }
- // Determine trailing zeros.
- for ( k = xc.length; !xc[--k]; );
- // E.g. [4, 11, 15] becomes 4bf.
- for ( i = 0, str = ''; i <= k; str += ALPHABET.charAt( xc[i++] ) );
- str = toFixedPoint( str, e );
- }
- // The caller will add the sign.
- return str;
- }
- // Perform division in the specified base. Called by div and convertBase.
- div = (function () {
- // Assume non-zero x and k.
- function multiply( x, k, base ) {
- var m, temp, xlo, xhi,
- carry = 0,
- i = x.length,
- klo = k % SQRT_BASE,
- khi = k / SQRT_BASE | 0;
- for ( x = x.slice(); i--; ) {
- xlo = x[i] % SQRT_BASE;
- xhi = x[i] / SQRT_BASE | 0;
- m = khi * xlo + xhi * klo;
- temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry;
- carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi;
- x[i] = temp % base;
- }
- if (carry) x = [carry].concat(x);
- return x;
- }
- function compare( a, b, aL, bL ) {
- var i, cmp;
- if ( aL != bL ) {
- cmp = aL > bL ? 1 : -1;
- } else {
- for ( i = cmp = 0; i < aL; i++ ) {
- if ( a[i] != b[i] ) {
- cmp = a[i] > b[i] ? 1 : -1;
- break;
- }
- }
- }
- return cmp;
- }
- function subtract( a, b, aL, base ) {
- var i = 0;
- // Subtract b from a.
- for ( ; aL--; ) {
- a[aL] -= i;
- i = a[aL] < b[aL] ? 1 : 0;
- a[aL] = i * base + a[aL] - b[aL];
- }
- // Remove leading zeros.
- for ( ; !a[0] && a.length > 1; a.splice(0, 1) );
- }
- // x: dividend, y: divisor.
- return function ( x, y, dp, rm, base ) {
- var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
- yL, yz,
- s = x.s == y.s ? 1 : -1,
- xc = x.c,
- yc = y.c;
- // Either NaN, Infinity or 0?
- if ( !xc || !xc[0] || !yc || !yc[0] ) {
- return new BigNumber(
- // Return NaN if either NaN, or both Infinity or 0.
- !x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN :
- // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
- xc && xc[0] == 0 || !yc ? s * 0 : s / 0
- );
- }
- q = new BigNumber(s);
- qc = q.c = [];
- e = x.e - y.e;
- s = dp + e + 1;
- if ( !base ) {
- base = BASE;
- e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE );
- s = s / LOG_BASE | 0;
- }
- // Result exponent may be one less then the current value of e.
- // The coefficients of the BigNumbers from convertBase may have trailing zeros.
- for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ );
- if ( yc[i] > ( xc[i] || 0 ) ) e--;
- if ( s < 0 ) {
- qc.push(1);
- more = true;
- } else {
- xL = xc.length;
- yL = yc.length;
- i = 0;
- s += 2;
- // Normalise xc and yc so highest order digit of yc is >= base / 2.
- n = mathfloor( base / ( yc[0] + 1 ) );
- // Not necessary, but to handle odd bases where yc[0] == ( base / 2 ) - 1.
- // if ( n > 1 || n++ == 1 && yc[0] < base / 2 ) {
- if ( n > 1 ) {
- yc = multiply( yc, n, base );
- xc = multiply( xc, n, base );
- yL = yc.length;
- xL = xc.length;
- }
- xi = yL;
- rem = xc.slice( 0, yL );
- remL = rem.length;
- // Add zeros to make remainder as long as divisor.
- for ( ; remL < yL; rem[remL++] = 0 );
- yz = yc.slice();
- yz = [0].concat(yz);
- yc0 = yc[0];
- if ( yc[1] >= base / 2 ) yc0++;
- // Not necessary, but to prevent trial digit n > base, when using base 3.
- // else if ( base == 3 && yc0 == 1 ) yc0 = 1 + 1e-15;
- do {
- n = 0;
- // Compare divisor and remainder.
- cmp = compare( yc, rem, yL, remL );
- // If divisor < remainder.
- if ( cmp < 0 ) {
- // Calculate trial digit, n.
- rem0 = rem[0];
- if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 );
- // n is how many times the divisor goes into the current remainder.
- n = mathfloor( rem0 / yc0 );
- // Algorithm:
- // 1. product = divisor * trial digit (n)
- // 2. if product > remainder: product -= divisor, n--
- // 3. remainder -= product
- // 4. if product was < remainder at 2:
- // 5. compare new remainder and divisor
- // 6. If remainder > divisor: remainder -= divisor, n++
- if ( n > 1 ) {
- // n may be > base only when base is 3.
- if (n >= base) n = base - 1;
- // product = divisor * trial digit.
- prod = multiply( yc, n, base );
- prodL = prod.length;
- remL = rem.length;
- // Compare product and remainder.
- // If product > remainder.
- // Trial digit n too high.
- // n is 1 too high about 5% of the time, and is not known to have
- // ever been more than 1 too high.
- while ( compare( prod, rem, prodL, remL ) == 1 ) {
- n--;
- // Subtract divisor from product.
- subtract( prod, yL < prodL ? yz : yc, prodL, base );
- prodL = prod.length;
- cmp = 1;
- }
- } else {
- // n is 0 or 1, cmp is -1.
- // If n is 0, there is no need to compare yc and rem again below,
- // so change cmp to 1 to avoid it.
- // If n is 1, leave cmp as -1, so yc and rem are compared again.
- if ( n == 0 ) {
- // divisor < remainder, so n must be at least 1.
- cmp = n = 1;
- }
- // product = divisor
- prod = yc.slice();
- prodL = prod.length;
- }
- if ( prodL < remL ) prod = [0].concat(prod);
- // Subtract product from remainder.
- subtract( rem, prod, remL, base );
- remL = rem.length;
- // If product was < remainder.
- if ( cmp == -1 ) {
- // Compare divisor and new remainder.
- // If divisor < new remainder, subtract divisor from remainder.
- // Trial digit n too low.
- // n is 1 too low about 5% of the time, and very rarely 2 too low.
- while ( compare( yc, rem, yL, remL ) < 1 ) {
- n++;
- // Subtract divisor from remainder.
- subtract( rem, yL < remL ? yz : yc, remL, base );
- remL = rem.length;
- }
- }
- } else if ( cmp === 0 ) {
- n++;
- rem = [0];
- } // else cmp === 1 and n will be 0
- // Add the next digit, n, to the result array.
- qc[i++] = n;
- // Update the remainder.
- if ( rem[0] ) {
- rem[remL++] = xc[xi] || 0;
- } else {
- rem = [ xc[xi] ];
- remL = 1;
- }
- } while ( ( xi++ < xL || rem[0] != null ) && s-- );
- more = rem[0] != null;
- // Leading zero?
- if ( !qc[0] ) qc.splice(0, 1);
- }
- if ( base == BASE ) {
- // To calculate q.e, first get the number of digits of qc[0].
- for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ );
- round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more );
- // Caller is convertBase.
- } else {
- q.e = e;
- q.r = +more;
- }
- return q;
- };
- })();
- /*
- * Return a string representing the value of BigNumber n in fixed-point or exponential
- * notation rounded to the specified decimal places or significant digits.
- *
- * n is a BigNumber.
- * i is the index of the last digit required (i.e. the digit that may be rounded up).
- * rm is the rounding mode.
- * caller is caller id: toExponential 19, toFixed 20, toFormat 21, toPrecision 24.
- */
- function format( n, i, rm, caller ) {
- var c0, e, ne, len, str;
- rm = rm != null && isValidInt( rm, 0, 8, caller, roundingMode )
- ? rm | 0 : ROUNDING_MODE;
- if ( !n.c ) return n.toString();
- c0 = n.c[0];
- ne = n.e;
- if ( i == null ) {
- str = coeffToString( n.c );
- str = caller == 19 || caller == 24 && ne <= TO_EXP_NEG
- ? toExponential( str, ne )
- : toFixedPoint( str, ne );
- } else {
- n = round( new BigNumber(n), i, rm );
- // n.e may have changed if the value was rounded up.
- e = n.e;
- str = coeffToString( n.c );
- len = str.length;
- // toPrecision returns exponential notation if the number of significant digits
- // specified is less than the number of digits necessary to represent the integer
- // part of the value in fixed-point notation.
- // Exponential notation.
- if ( caller == 19 || caller == 24 && ( i <= e || e <= TO_EXP_NEG ) ) {
- // Append zeros?
- for ( ; len < i; str += '0', len++ );
- str = toExponential( str, e );
- // Fixed-point notation.
- } else {
- i -= ne;
- str = toFixedPoint( str, e );
- // Append zeros?
- if ( e + 1 > len ) {
- if ( --i > 0 ) for ( str += '.'; i--; str += '0' );
- } else {
- i += e - len;
- if ( i > 0 ) {
- if ( e + 1 == len ) str += '.';
- for ( ; i--; str += '0' );
- }
- }
- }
- }
- return n.s < 0 && c0 ? '-' + str : str;
- }
- // Handle BigNumber.max and BigNumber.min.
- function maxOrMin( args, method ) {
- var m, n,
- i = 0;
- if ( isArray( args[0] ) ) args = args[0];
- m = new BigNumber( args[0] );
- for ( ; ++i < args.length; ) {
- n = new BigNumber( args[i] );
- // If any number is NaN, return NaN.
- if ( !n.s ) {
- m = n;
- break;
- } else if ( method.call( m, n ) ) {
- m = n;
- }
- }
- return m;
- }
- /*
- * Return true if n is an integer in range, otherwise throw.
- * Use for argument validation when ERRORS is true.
- */
- function intValidatorWithErrors( n, min, max, caller, name ) {
- if ( n < min || n > max || n != truncate(n) ) {
- raise( caller, ( name || 'decimal places' ) +
- ( n < min || n > max ? ' out of range' : ' not an integer' ), n );
- }
- return true;
- }
- /*
- * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
- * Called by minus, plus and times.
- */
- function normalise( n, c, e ) {
- var i = 1,
- j = c.length;
- // Remove trailing zeros.
- for ( ; !c[--j]; c.pop() );
- // Calculate the base 10 exponent. First get the number of digits of c[0].
- for ( j = c[0]; j >= 10; j /= 10, i++ );
- // Overflow?
- if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) {
- // Infinity.
- n.c = n.e = null;
- // Underflow?
- } else if ( e < MIN_EXP ) {
- // Zero.
- n.c = [ n.e = 0 ];
- } else {
- n.e = e;
- n.c = c;
- }
- return n;
- }
- // Handle values that fail the validity test in BigNumber.
- parseNumeric = (function () {
- var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
- dotAfter = /^([^.]+)\.$/,
- dotBefore = /^\.([^.]+)$/,
- isInfinityOrNaN = /^-?(Infinity|NaN)$/,
- whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;
- return function ( x, str, num, b ) {
- var base,
- s = num ? str : str.replace( whitespaceOrPlus, '' );
- // No exception on ±Infinity or NaN.
- if ( isInfinityOrNaN.test(s) ) {
- x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
- } else {
- if ( !num ) {
- // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
- s = s.replace( basePrefix, function ( m, p1, p2 ) {
- base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
- return !b || b == base ? p1 : m;
- });
- if (b) {
- base = b;
- // E.g. '1.' to '1', '.1' to '0.1'
- s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' );
- }
- if ( str != s ) return new BigNumber( s, base );
- }
- // 'new BigNumber() not a number: {n}'
- // 'new BigNumber() not a base {b} number: {n}'
- if (ERRORS) raise( id, 'not a' + ( b ? ' base ' + b : '' ) + ' number', str );
- x.s = null;
- }
- x.c = x.e = null;
- id = 0;
- }
- })();
- // Throw a BigNumber Error.
- function raise( caller, msg, val ) {
- var error = new Error( [
- 'new BigNumber', // 0
- 'cmp', // 1
- 'config', // 2
- 'div', // 3
- 'divToInt', // 4
- 'eq', // 5
- 'gt', // 6
- 'gte', // 7
- 'lt', // 8
- 'lte', // 9
- 'minus', // 10
- 'mod', // 11
- 'plus', // 12
- 'precision', // 13
- 'random', // 14
- 'round', // 15
- 'shift', // 16
- 'times', // 17
- 'toDigits', // 18
- 'toExponential', // 19
- 'toFixed', // 20
- 'toFormat', // 21
- 'toFraction', // 22
- 'pow', // 23
- 'toPrecision', // 24
- 'toString', // 25
- 'BigNumber' // 26
- ][caller] + '() ' + msg + ': ' + val );
- error.name = 'BigNumber Error';
- id = 0;
- throw error;
- }
- /*
- * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
- * If r is truthy, it is known that there are more digits after the rounding digit.
- */
- function round( x, sd, rm, r ) {
- var d, i, j, k, n, ni, rd,
- xc = x.c,
- pows10 = POWS_TEN;
- // if x is not Infinity or NaN...
- if (xc) {
- // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
- // n is a base 1e14 number, the value of the element of array x.c containing rd.
- // ni is the index of n within x.c.
- // d is the number of digits of n.
- // i is the index of rd within n including leading zeros.
- // j is the actual index of rd within n (if < 0, rd is a leading zero).
- out: {
- // Get the number of digits of the first element of xc.
- for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ );
- i = sd - d;
- // If the rounding digit is in the first element of xc...
- if ( i < 0 ) {
- i += LOG_BASE;
- j = sd;
- n = xc[ ni = 0 ];
- // Get the rounding digit at index j of n.
- rd = n / pows10[ d - j - 1 ] % 10 | 0;
- } else {
- ni = mathceil( ( i + 1 ) / LOG_BASE );
- if ( ni >= xc.length ) {
- if (r) {
- // Needed by sqrt.
- for ( ; xc.length <= ni; xc.push(0) );
- n = rd = 0;
- d = 1;
- i %= LOG_BASE;
- j = i - LOG_BASE + 1;
- } else {
- break out;
- }
- } else {
- n = k = xc[ni];
- // Get the number of digits of n.
- for ( d = 1; k >= 10; k /= 10, d++ );
- // Get the index of rd within n.
- i %= LOG_BASE;
- // Get the index of rd within n, adjusted for leading zeros.
- // The number of leading zeros of n is given by LOG_BASE - d.
- j = i - LOG_BASE + d;
- // Get the rounding digit at index j of n.
- rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0;
- }
- }
- r = r || sd < 0 ||
- // Are there any non-zero digits after the rounding digit?
- // The expression n % pows10[ d - j - 1 ] returns all digits of n to the right
- // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
- xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] );
- r = rm < 4
- ? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
- : rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 &&
- // Check whether the digit to the left of the rounding digit is odd.
- ( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 ||
- rm == ( x.s < 0 ? 8 : 7 ) );
- if ( sd < 1 || !xc[0] ) {
- xc.length = 0;
- if (r) {
- // Convert sd to decimal places.
- sd -= x.e + 1;
- // 1, 0.1, 0.01, 0.001, 0.0001 etc.
- xc[0] = pows10[ ( LOG_BASE - sd % LOG_BASE ) % LOG_BASE ];
- x.e = -sd || 0;
- } else {
- // Zero.
- xc[0] = x.e = 0;
- }
- return x;
- }
- // Remove excess digits.
- if ( i == 0 ) {
- xc.length = ni;
- k = 1;
- ni--;
- } else {
- xc.length = ni + 1;
- k = pows10[ LOG_BASE - i ];
- // E.g. 56700 becomes 56000 if 7 is the rounding digit.
- // j > 0 means i > number of leading zeros of n.
- xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0;
- }
- // Round up?
- if (r) {
- for ( ; ; ) {
- // If the digit to be rounded up is in the first element of xc...
- if ( ni == 0 ) {
- // i will be the length of xc[0] before k is added.
- for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ );
- j = xc[0] += k;
- for ( k = 1; j >= 10; j /= 10, k++ );
- // if i != k the length has increased.
- if ( i != k ) {
- x.e++;
- if ( xc[0] == BASE ) xc[0] = 1;
- }
- break;
- } else {
- xc[ni] += k;
- if ( xc[ni] != BASE ) break;
- xc[ni--] = 0;
- k = 1;
- }
- }
- }
- // Remove trailing zeros.
- for ( i = xc.length; xc[--i] === 0; xc.pop() );
- }
- // Overflow? Infinity.
- if ( x.e > MAX_EXP ) {
- x.c = x.e = null;
- // Underflow? Zero.
- } else if ( x.e < MIN_EXP ) {
- x.c = [ x.e = 0 ];
- }
- }
- return x;
- }
- // PROTOTYPE/INSTANCE METHODS
- /*
- * Return a new BigNumber whose value is the absolute value of this BigNumber.
- */
- P.absoluteValue = P.abs = function () {
- var x = new BigNumber(this);
- if ( x.s < 0 ) x.s = 1;
- return x;
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole
- * number in the direction of Infinity.
- */
- P.ceil = function () {
- return round( new BigNumber(this), this.e + 1, 2 );
- };
- /*
- * Return
- * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
- * -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
- * 0 if they have the same value,
- * or null if the value of either is NaN.
- */
- P.comparedTo = P.cmp = function ( y, b ) {
- id = 1;
- return compare( this, new BigNumber( y, b ) );
- };
- /*
- * Return the number of decimal places of the value of this BigNumber, or null if the value
- * of this BigNumber is ±Infinity or NaN.
- */
- P.decimalPlaces = P.dp = function () {
- var n, v,
- c = this.c;
- if ( !c ) return null;
- n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE;
- // Subtract the number of trailing zeros of the last number.
- if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- );
- if ( n < 0 ) n = 0;
- return n;
- };
- /*
- * n / 0 = I
- * n / N = N
- * n / I = 0
- * 0 / n = 0
- * 0 / 0 = N
- * 0 / N = N
- * 0 / I = 0
- * N / n = N
- * N / 0 = N
- * N / N = N
- * N / I = N
- * I / n = I
- * I / 0 = I
- * I / N = N
- * I / I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
- * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
- */
- P.dividedBy = P.div = function ( y, b ) {
- id = 3;
- return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE );
- };
- /*
- * Return a new BigNumber whose value is the integer part of dividing the value of this
- * BigNumber by the value of BigNumber(y, b).
- */
- P.dividedToIntegerBy = P.divToInt = function ( y, b ) {
- id = 4;
- return div( this, new BigNumber( y, b ), 0, 1 );
- };
- /*
- * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
- * otherwise returns false.
- */
- P.equals = P.eq = function ( y, b ) {
- id = 5;
- return compare( this, new BigNumber( y, b ) ) === 0;
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole
- * number in the direction of -Infinity.
- */
- P.floor = function () {
- return round( new BigNumber(this), this.e + 1, 3 );
- };
- /*
- * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
- * otherwise returns false.
- */
- P.greaterThan = P.gt = function ( y, b ) {
- id = 6;
- return compare( this, new BigNumber( y, b ) ) > 0;
- };
- /*
- * Return true if the value of this BigNumber is greater than or equal to the value of
- * BigNumber(y, b), otherwise returns false.
- */
- P.greaterThanOrEqualTo = P.gte = function ( y, b ) {
- id = 7;
- return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0;
- };
- /*
- * Return true if the value of this BigNumber is a finite number, otherwise returns false.
- */
- P.isFinite = function () {
- return !!this.c;
- };
- /*
- * Return true if the value of this BigNumber is an integer, otherwise return false.
- */
- P.isInteger = P.isInt = function () {
- return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2;
- };
- /*
- * Return true if the value of this BigNumber is NaN, otherwise returns false.
- */
- P.isNaN = function () {
- return !this.s;
- };
- /*
- * Return true if the value of this BigNumber is negative, otherwise returns false.
- */
- P.isNegative = P.isNeg = function () {
- return this.s < 0;
- };
- /*
- * Return true if the value of this BigNumber is 0 or -0, otherwise returns false.
- */
- P.isZero = function () {
- return !!this.c && this.c[0] == 0;
- };
- /*
- * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
- * otherwise returns false.
- */
- P.lessThan = P.lt = function ( y, b ) {
- id = 8;
- return compare( this, new BigNumber( y, b ) ) < 0;
- };
- /*
- * Return true if the value of this BigNumber is less than or equal to the value of
- * BigNumber(y, b), otherwise returns false.
- */
- P.lessThanOrEqualTo = P.lte = function ( y, b ) {
- id = 9;
- return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0;
- };
- /*
- * n - 0 = n
- * n - N = N
- * n - I = -I
- * 0 - n = -n
- * 0 - 0 = 0
- * 0 - N = N
- * 0 - I = -I
- * N - n = N
- * N - 0 = N
- * N - N = N
- * N - I = N
- * I - n = I
- * I - 0 = I
- * I - N = N
- * I - I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber minus the value of
- * BigNumber(y, b).
- */
- P.minus = P.sub = function ( y, b ) {
- var i, j, t, xLTy,
- x = this,
- a = x.s;
- id = 10;
- y = new BigNumber( y, b );
- b = y.s;
- // Either NaN?
- if ( !a || !b ) return new BigNumber(NaN);
- // Signs differ?
- if ( a != b ) {
- y.s = -b;
- return x.plus(y);
- }
- var xe = x.e / LOG_BASE,
- ye = y.e / LOG_BASE,
- xc = x.c,
- yc = y.c;
- if ( !xe || !ye ) {
- // Either Infinity?
- if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN );
- // Either zero?
- if ( !xc[0] || !yc[0] ) {
- // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
- return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x :
- // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
- ROUNDING_MODE == 3 ? -0 : 0 );
- }
- }
- xe = bitFloor(xe);
- ye = bitFloor(ye);
- xc = xc.slice();
- // Determine which is the bigger number.
- if ( a = xe - ye ) {
- if ( xLTy = a < 0 ) {
- a = -a;
- t = xc;
- } else {
- ye = xe;
- t = yc;
- }
- t.reverse();
- // Prepend zeros to equalise exponents.
- for ( b = a; b--; t.push(0) );
- t.reverse();
- } else {
- // Exponents equal. Check digit by digit.
- j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b;
- for ( a = b = 0; b < j; b++ ) {
- if ( xc[b] != yc[b] ) {
- xLTy = xc[b] < yc[b];
- break;
- }
- }
- }
- // x < y? Point xc to the array of the bigger number.
- if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s;
- b = ( j = yc.length ) - ( i = xc.length );
- // Append zeros to xc if shorter.
- // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
- if ( b > 0 ) for ( ; b--; xc[i++] = 0 );
- b = BASE - 1;
- // Subtract yc from xc.
- for ( ; j > a; ) {
- if ( xc[--j] < yc[j] ) {
- for ( i = j; i && !xc[--i]; xc[i] = b );
- --xc[i];
- xc[j] += BASE;
- }
- xc[j] -= yc[j];
- }
- // Remove leading zeros and adjust exponent accordingly.
- for ( ; xc[0] == 0; xc.splice(0, 1), --ye );
- // Zero?
- if ( !xc[0] ) {
- // Following IEEE 754 (2008) 6.3,
- // n - n = +0 but n - n = -0 when rounding towards -Infinity.
- y.s = ROUNDING_MODE == 3 ? -1 : 1;
- y.c = [ y.e = 0 ];
- return y;
- }
- // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
- // for finite x and y.
- return normalise( y, xc, ye );
- };
- /*
- * n % 0 = N
- * n % N = N
- * n % I = n
- * 0 % n = 0
- * -0 % n = -0
- * 0 % 0 = N
- * 0 % N = N
- * 0 % I = 0
- * N % n = N
- * N % 0 = N
- * N % N = N
- * N % I = N
- * I % n = N
- * I % 0 = N
- * I % N = N
- * I % I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
- * BigNumber(y, b). The result depends on the value of MODULO_MODE.
- */
- P.modulo = P.mod = function ( y, b ) {
- var q, s,
- x = this;
- id = 11;
- y = new BigNumber( y, b );
- // Return NaN if x is Infinity or NaN, or y is NaN or zero.
- if ( !x.c || !y.s || y.c && !y.c[0] ) {
- return new BigNumber(NaN);
- // Return x if y is Infinity or x is zero.
- } else if ( !y.c || x.c && !x.c[0] ) {
- return new BigNumber(x);
- }
- if ( MODULO_MODE == 9 ) {
- // Euclidian division: q = sign(y) * floor(x / abs(y))
- // r = x - qy where 0 <= r < abs(y)
- s = y.s;
- y.s = 1;
- q = div( x, y, 0, 3 );
- y.s = s;
- q.s *= s;
- } else {
- q = div( x, y, 0, MODULO_MODE );
- }
- return x.minus( q.times(y) );
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber negated,
- * i.e. multiplied by -1.
- */
- P.negated = P.neg = function () {
- var x = new BigNumber(this);
- x.s = -x.s || null;
- return x;
- };
- /*
- * n + 0 = n
- * n + N = N
- * n + I = I
- * 0 + n = n
- * 0 + 0 = 0
- * 0 + N = N
- * 0 + I = I
- * N + n = N
- * N + 0 = N
- * N + N = N
- * N + I = N
- * I + n = I
- * I + 0 = I
- * I + N = N
- * I + I = I
- *
- * Return a new BigNumber whose value is the value of this BigNumber plus the value of
- * BigNumber(y, b).
- */
- P.plus = P.add = function ( y, b ) {
- var t,
- x = this,
- a = x.s;
- id = 12;
- y = new BigNumber( y, b );
- b = y.s;
- // Either NaN?
- if ( !a || !b ) return new BigNumber(NaN);
- // Signs differ?
- if ( a != b ) {
- y.s = -b;
- return x.minus(y);
- }
- var xe = x.e / LOG_BASE,
- ye = y.e / LOG_BASE,
- xc = x.c,
- yc = y.c;
- if ( !xe || !ye ) {
- // Return ±Infinity if either ±Infinity.
- if ( !xc || !yc ) return new BigNumber( a / 0 );
- // Either zero?
- // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
- if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 );
- }
- xe = bitFloor(xe);
- ye = bitFloor(ye);
- xc = xc.slice();
- // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
- if ( a = xe - ye ) {
- if ( a > 0 ) {
- ye = xe;
- t = yc;
- } else {
- a = -a;
- t = xc;
- }
- t.reverse();
- for ( ; a--; t.push(0) );
- t.reverse();
- }
- a = xc.length;
- b = yc.length;
- // Point xc to the longer array, and b to the shorter length.
- if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a;
- // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
- for ( a = 0; b; ) {
- a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0;
- xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;
- }
- if (a) {
- xc = [a].concat(xc);
- ++ye;
- }
- // No need to check for zero, as +x + +y != 0 && -x + -y != 0
- // ye = MAX_EXP + 1 possible
- return normalise( y, xc, ye );
- };
- /*
- * Return the number of significant digits of the value of this BigNumber.
- *
- * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.
- */
- P.precision = P.sd = function (z) {
- var n, v,
- x = this,
- c = x.c;
- // 'precision() argument not a boolean or binary digit: {z}'
- if ( z != null && z !== !!z && z !== 1 && z !== 0 ) {
- if (ERRORS) raise( 13, 'argument' + notBool, z );
- if ( z != !!z ) z = null;
- }
- if ( !c ) return null;
- v = c.length - 1;
- n = v * LOG_BASE + 1;
- if ( v = c[v] ) {
- // Subtract the number of trailing zeros of the last element.
- for ( ; v % 10 == 0; v /= 10, n-- );
- // Add the number of digits of the first element.
- for ( v = c[0]; v >= 10; v /= 10, n++ );
- }
- if ( z && x.e + 1 > n ) n = x.e + 1;
- return n;
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of
- * dp decimal places using rounding mode rm, or to 0 and ROUNDING_MODE respectively if
- * omitted.
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * 'round() decimal places out of range: {dp}'
- * 'round() decimal places not an integer: {dp}'
- * 'round() rounding mode not an integer: {rm}'
- * 'round() rounding mode out of range: {rm}'
- */
- P.round = function ( dp, rm ) {
- var n = new BigNumber(this);
- if ( dp == null || isValidInt( dp, 0, MAX, 15 ) ) {
- round( n, ~~dp + this.e + 1, rm == null ||
- !isValidInt( rm, 0, 8, 15, roundingMode ) ? ROUNDING_MODE : rm | 0 );
- }
- return n;
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
- * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
- *
- * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
- *
- * If k is out of range and ERRORS is false, the result will be ±0 if k < 0, or ±Infinity
- * otherwise.
- *
- * 'shift() argument not an integer: {k}'
- * 'shift() argument out of range: {k}'
- */
- P.shift = function (k) {
- var n = this;
- return isValidInt( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 16, 'argument' )
- // k < 1e+21, or truncate(k) will produce exponential notation.
- ? n.times( '1e' + truncate(k) )
- : new BigNumber( n.c && n.c[0] && ( k < -MAX_SAFE_INTEGER || k > MAX_SAFE_INTEGER )
- ? n.s * ( k < 0 ? 0 : 1 / 0 )
- : n );
- };
- /*
- * sqrt(-n) = N
- * sqrt( N) = N
- * sqrt(-I) = N
- * sqrt( I) = I
- * sqrt( 0) = 0
- * sqrt(-0) = -0
- *
- * Return a new BigNumber whose value is the square root of the value of this BigNumber,
- * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
- */
- P.squareRoot = P.sqrt = function () {
- var m, n, r, rep, t,
- x = this,
- c = x.c,
- s = x.s,
- e = x.e,
- dp = DECIMAL_PLACES + 4,
- half = new BigNumber('0.5');
- // Negative/NaN/Infinity/zero?
- if ( s !== 1 || !c || !c[0] ) {
- return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 );
- }
- // Initial estimate.
- s = Math.sqrt( +x );
- // Math.sqrt underflow/overflow?
- // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
- if ( s == 0 || s == 1 / 0 ) {
- n = coeffToString(c);
- if ( ( n.length + e ) % 2 == 0 ) n += '0';
- s = Math.sqrt(n);
- e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 );
- if ( s == 1 / 0 ) {
- n = '1e' + e;
- } else {
- n = s.toExponential();
- n = n.slice( 0, n.indexOf('e') + 1 ) + e;
- }
- r = new BigNumber(n);
- } else {
- r = new BigNumber( s + '' );
- }
- // Check for zero.
- // r could be zero if MIN_EXP is changed after the this value was created.
- // This would cause a division by zero (x/t) and hence Infinity below, which would cause
- // coeffToString to throw.
- if ( r.c[0] ) {
- e = r.e;
- s = e + dp;
- if ( s < 3 ) s = 0;
- // Newton-Raphson iteration.
- for ( ; ; ) {
- t = r;
- r = half.times( t.plus( div( x, t, dp, 1 ) ) );
- if ( coeffToString( t.c ).slice( 0, s ) === ( n =
- coeffToString( r.c ) ).slice( 0, s ) ) {
- // The exponent of r may here be one less than the final result exponent,
- // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
- // are indexed correctly.
- if ( r.e < e ) --s;
- n = n.slice( s - 3, s + 1 );
- // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
- // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
- // iteration.
- if ( n == '9999' || !rep && n == '4999' ) {
- // On the first iteration only, check to see if rounding up gives the
- // exact result as the nines may infinitely repeat.
- if ( !rep ) {
- round( t, t.e + DECIMAL_PLACES + 2, 0 );
- if ( t.times(t).eq(x) ) {
- r = t;
- break;
- }
- }
- dp += 4;
- s += 4;
- rep = 1;
- } else {
- // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
- // result. If not, then there are further digits and m will be truthy.
- if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) {
- // Truncate to the first rounding digit.
- round( r, r.e + DECIMAL_PLACES + 2, 1 );
- m = !r.times(r).eq(x);
- }
- break;
- }
- }
- }
- }
- return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m );
- };
- /*
- * n * 0 = 0
- * n * N = N
- * n * I = I
- * 0 * n = 0
- * 0 * 0 = 0
- * 0 * N = N
- * 0 * I = N
- * N * n = N
- * N * 0 = N
- * N * N = N
- * N * I = N
- * I * n = I
- * I * 0 = N
- * I * N = N
- * I * I = I
- *
- * Return a new BigNumber whose value is the value of this BigNumber times the value of
- * BigNumber(y, b).
- */
- P.times = P.mul = function ( y, b ) {
- var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
- base, sqrtBase,
- x = this,
- xc = x.c,
- yc = ( id = 17, y = new BigNumber( y, b ) ).c;
- // Either NaN, ±Infinity or ±0?
- if ( !xc || !yc || !xc[0] || !yc[0] ) {
- // Return NaN if either is NaN, or one is 0 and the other is Infinity.
- if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) {
- y.c = y.e = y.s = null;
- } else {
- y.s *= x.s;
- // Return ±Infinity if either is ±Infinity.
- if ( !xc || !yc ) {
- y.c = y.e = null;
- // Return ±0 if either is ±0.
- } else {
- y.c = [0];
- y.e = 0;
- }
- }
- return y;
- }
- e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE );
- y.s *= x.s;
- xcL = xc.length;
- ycL = yc.length;
- // Ensure xc points to longer array and xcL to its length.
- if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i;
- // Initialise the result array with zeros.
- for ( i = xcL + ycL, zc = []; i--; zc.push(0) );
- base = BASE;
- sqrtBase = SQRT_BASE;
- for ( i = ycL; --i >= 0; ) {
- c = 0;
- ylo = yc[i] % sqrtBase;
- yhi = yc[i] / sqrtBase | 0;
- for ( k = xcL, j = i + k; j > i; ) {
- xlo = xc[--k] % sqrtBase;
- xhi = xc[k] / sqrtBase | 0;
- m = yhi * xlo + xhi * ylo;
- xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c;
- c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi;
- zc[j--] = xlo % base;
- }
- zc[j] = c;
- }
- if (c) {
- ++e;
- } else {
- zc.splice(0, 1);
- }
- return normalise( y, zc, e );
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of
- * sd significant digits using rounding mode rm, or ROUNDING_MODE if rm is omitted.
- *
- * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * 'toDigits() precision out of range: {sd}'
- * 'toDigits() precision not an integer: {sd}'
- * 'toDigits() rounding mode not an integer: {rm}'
- * 'toDigits() rounding mode out of range: {rm}'
- */
- P.toDigits = function ( sd, rm ) {
- var n = new BigNumber(this);
- sd = sd == null || !isValidInt( sd, 1, MAX, 18, 'precision' ) ? null : sd | 0;
- rm = rm == null || !isValidInt( rm, 0, 8, 18, roundingMode ) ? ROUNDING_MODE : rm | 0;
- return sd ? round( n, sd, rm ) : n;
- };
- /*
- * Return a string representing the value of this BigNumber in exponential notation and
- * rounded using ROUNDING_MODE to dp fixed decimal places.
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * 'toExponential() decimal places not an integer: {dp}'
- * 'toExponential() decimal places out of range: {dp}'
- * 'toExponential() rounding mode not an integer: {rm}'
- * 'toExponential() rounding mode out of range: {rm}'
- */
- P.toExponential = function ( dp, rm ) {
- return format( this,
- dp != null && isValidInt( dp, 0, MAX, 19 ) ? ~~dp + 1 : null, rm, 19 );
- };
- /*
- * Return a string representing the value of this BigNumber in fixed-point notation rounding
- * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
- *
- * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
- * but e.g. (-0.00001).toFixed(0) is '-0'.
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * 'toFixed() decimal places not an integer: {dp}'
- * 'toFixed() decimal places out of range: {dp}'
- * 'toFixed() rounding mode not an integer: {rm}'
- * 'toFixed() rounding mode out of range: {rm}'
- */
- P.toFixed = function ( dp, rm ) {
- return format( this, dp != null && isValidInt( dp, 0, MAX, 20 )
- ? ~~dp + this.e + 1 : null, rm, 20 );
- };
- /*
- * Return a string representing the value of this BigNumber in fixed-point notation rounded
- * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
- * of the FORMAT object (see BigNumber.config).
- *
- * FORMAT = {
- * decimalSeparator : '.',
- * groupSeparator : ',',
- * groupSize : 3,
- * secondaryGroupSize : 0,
- * fractionGroupSeparator : '\xA0', // non-breaking space
- * fractionGroupSize : 0
- * };
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * 'toFormat() decimal places not an integer: {dp}'
- * 'toFormat() decimal places out of range: {dp}'
- * 'toFormat() rounding mode not an integer: {rm}'
- * 'toFormat() rounding mode out of range: {rm}'
- */
- P.toFormat = function ( dp, rm ) {
- var str = format( this, dp != null && isValidInt( dp, 0, MAX, 21 )
- ? ~~dp + this.e + 1 : null, rm, 21 );
- if ( this.c ) {
- var i,
- arr = str.split('.'),
- g1 = +FORMAT.groupSize,
- g2 = +FORMAT.secondaryGroupSize,
- groupSeparator = FORMAT.groupSeparator,
- intPart = arr[0],
- fractionPart = arr[1],
- isNeg = this.s < 0,
- intDigits = isNeg ? intPart.slice(1) : intPart,
- len = intDigits.length;
- if (g2) i = g1, g1 = g2, g2 = i, len -= i;
- if ( g1 > 0 && len > 0 ) {
- i = len % g1 || g1;
- intPart = intDigits.substr( 0, i );
- for ( ; i < len; i += g1 ) {
- intPart += groupSeparator + intDigits.substr( i, g1 );
- }
- if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i);
- if (isNeg) intPart = '-' + intPart;
- }
- str = fractionPart
- ? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize )
- ? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ),
- '$&' + FORMAT.fractionGroupSeparator )
- : fractionPart )
- : intPart;
- }
- return str;
- };
- /*
- * Return a string array representing the value of this BigNumber as a simple fraction with
- * an integer numerator and an integer denominator. The denominator will be a positive
- * non-zero value less than or equal to the specified maximum denominator. If a maximum
- * denominator is not specified, the denominator will be the lowest value necessary to
- * represent the number exactly.
- *
- * [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator.
- *
- * 'toFraction() max denominator not an integer: {md}'
- * 'toFraction() max denominator out of range: {md}'
- */
- P.toFraction = function (md) {
- var arr, d0, d2, e, exp, n, n0, q, s,
- k = ERRORS,
- x = this,
- xc = x.c,
- d = new BigNumber(ONE),
- n1 = d0 = new BigNumber(ONE),
- d1 = n0 = new BigNumber(ONE);
- if ( md != null ) {
- ERRORS = false;
- n = new BigNumber(md);
- ERRORS = k;
- if ( !( k = n.isInt() ) || n.lt(ONE) ) {
- if (ERRORS) {
- raise( 22,
- 'max denominator ' + ( k ? 'out of range' : 'not an integer' ), md );
- }
- // ERRORS is false:
- // If md is a finite non-integer >= 1, round it to an integer and use it.
- md = !k && n.c && round( n, n.e + 1, 1 ).gte(ONE) ? n : null;
- }
- }
- if ( !xc ) return x.toString();
- s = coeffToString(xc);
- // Determine initial denominator.
- // d is a power of 10 and the minimum max denominator that specifies the value exactly.
- e = d.e = s.length - x.e - 1;
- d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ];
- md = !md || n.cmp(d) > 0 ? ( e > 0 ? d : n1 ) : n;
- exp = MAX_EXP;
- MAX_EXP = 1 / 0;
- n = new BigNumber(s);
- // n0 = d1 = 0
- n0.c[0] = 0;
- for ( ; ; ) {
- q = div( n, d, 0, 1 );
- d2 = d0.plus( q.times(d1) );
- if ( d2.cmp(md) == 1 ) break;
- d0 = d1;
- d1 = d2;
- n1 = n0.plus( q.times( d2 = n1 ) );
- n0 = d2;
- d = n.minus( q.times( d2 = d ) );
- n = d2;
- }
- d2 = div( md.minus(d0), d1, 0, 1 );
- n0 = n0.plus( d2.times(n1) );
- d0 = d0.plus( d2.times(d1) );
- n0.s = n1.s = x.s;
- e *= 2;
- // Determine which fraction is closer to x, n0/d0 or n1/d1
- arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().cmp(
- div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1
- ? [ n1.toString(), d1.toString() ]
- : [ n0.toString(), d0.toString() ];
- MAX_EXP = exp;
- return arr;
- };
- /*
- * Return the value of this BigNumber converted to a number primitive.
- */
- P.toNumber = function () {
- return +this;
- };
- /*
- * Return a BigNumber whose value is the value of this BigNumber raised to the power n.
- * If m is present, return the result modulo m.
- * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
- * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using
- * ROUNDING_MODE.
- *
- * The modular power operation works efficiently when x, n, and m are positive integers,
- * otherwise it is equivalent to calculating x.toPower(n).modulo(m) (with POW_PRECISION 0).
- *
- * n {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
- * [m] {number|string|BigNumber} The modulus.
- *
- * 'pow() exponent not an integer: {n}'
- * 'pow() exponent out of range: {n}'
- *
- * Performs 54 loop iterations for n of 9007199254740991.
- */
- P.toPower = P.pow = function ( n, m ) {
- var k, y, z,
- i = mathfloor( n < 0 ? -n : +n ),
- x = this;
- if ( m != null ) {
- id = 23;
- m = new BigNumber(m);
- }
- // Pass ±Infinity to Math.pow if exponent is out of range.
- if ( !isValidInt( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 23, 'exponent' ) &&
- ( !isFinite(n) || i > MAX_SAFE_INTEGER && ( n /= 0 ) ||
- parseFloat(n) != n && !( n = NaN ) ) || n == 0 ) {
- k = Math.pow( +x, n );
- return new BigNumber( m ? k % m : k );
- }
- if (m) {
- if ( n > 1 && x.gt(ONE) && x.isInt() && m.gt(ONE) && m.isInt() ) {
- x = x.mod(m);
- } else {
- z = m;
- // Nullify m so only a single mod operation is performed at the end.
- m = null;
- }
- } else if (POW_PRECISION) {
- // Truncating each coefficient array to a length of k after each multiplication
- // equates to truncating significant digits to POW_PRECISION + [28, 41],
- // i.e. there will be a minimum of 28 guard digits retained.
- // (Using + 1.5 would give [9, 21] guard digits.)
- k = mathceil( POW_PRECISION / LOG_BASE + 2 );
- }
- y = new BigNumber(ONE);
- for ( ; ; ) {
- if ( i % 2 ) {
- y = y.times(x);
- if ( !y.c ) break;
- if (k) {
- if ( y.c.length > k ) y.c.length = k;
- } else if (m) {
- y = y.mod(m);
- }
- }
- i = mathfloor( i / 2 );
- if ( !i ) break;
- x = x.times(x);
- if (k) {
- if ( x.c && x.c.length > k ) x.c.length = k;
- } else if (m) {
- x = x.mod(m);
- }
- }
- if (m) return y;
- if ( n < 0 ) y = ONE.div(y);
- return z ? y.mod(z) : k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y;
- };
- /*
- * Return a string representing the value of this BigNumber rounded to sd significant digits
- * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
- * necessary to represent the integer part of the value in fixed-point notation, then use
- * exponential notation.
- *
- * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * 'toPrecision() precision not an integer: {sd}'
- * 'toPrecision() precision out of range: {sd}'
- * 'toPrecision() rounding mode not an integer: {rm}'
- * 'toPrecision() rounding mode out of range: {rm}'
- */
- P.toPrecision = function ( sd, rm ) {
- return format( this, sd != null && isValidInt( sd, 1, MAX, 24, 'precision' )
- ? sd | 0 : null, rm, 24 );
- };
- /*
- * Return a string representing the value of this BigNumber in base b, or base 10 if b is
- * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
- * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
- * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
- * TO_EXP_NEG, return exponential notation.
- *
- * [b] {number} Integer, 2 to 64 inclusive.
- *
- * 'toString() base not an integer: {b}'
- * 'toString() base out of range: {b}'
- */
- P.toString = function (b) {
- var str,
- n = this,
- s = n.s,
- e = n.e;
- // Infinity or NaN?
- if ( e === null ) {
- if (s) {
- str = 'Infinity';
- if ( s < 0 ) str = '-' + str;
- } else {
- str = 'NaN';
- }
- } else {
- str = coeffToString( n.c );
- if ( b == null || !isValidInt( b, 2, 64, 25, 'base' ) ) {
- str = e <= TO_EXP_NEG || e >= TO_EXP_POS
- ? toExponential( str, e )
- : toFixedPoint( str, e );
- } else {
- str = convertBase( toFixedPoint( str, e ), b | 0, 10, s );
- }
- if ( s < 0 && n.c[0] ) str = '-' + str;
- }
- return str;
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber truncated to a whole
- * number.
- */
- P.truncated = P.trunc = function () {
- return round( new BigNumber(this), this.e + 1, 1 );
- };
- /*
- * Return as toString, but do not accept a base argument, and include the minus sign for
- * negative zero.
- */
- P.valueOf = P.toJSON = function () {
- var str,
- n = this,
- e = n.e;
- if ( e === null ) return n.toString();
- str = coeffToString( n.c );
- str = e <= TO_EXP_NEG || e >= TO_EXP_POS
- ? toExponential( str, e )
- : toFixedPoint( str, e );
- return n.s < 0 ? '-' + str : str;
- };
- P.isBigNumber = true;
- if ( config != null ) BigNumber.config(config);
- return BigNumber;
- }
- // PRIVATE HELPER FUNCTIONS
- function bitFloor(n) {
- var i = n | 0;
- return n > 0 || n === i ? i : i - 1;
- }
- // Return a coefficient array as a string of base 10 digits.
- function coeffToString(a) {
- var s, z,
- i = 1,
- j = a.length,
- r = a[0] + '';
- for ( ; i < j; ) {
- s = a[i++] + '';
- z = LOG_BASE - s.length;
- for ( ; z--; s = '0' + s );
- r += s;
- }
- // Determine trailing zeros.
- for ( j = r.length; r.charCodeAt(--j) === 48; );
- return r.slice( 0, j + 1 || 1 );
- }
- // Compare the value of BigNumbers x and y.
- function compare( x, y ) {
- var a, b,
- xc = x.c,
- yc = y.c,
- i = x.s,
- j = y.s,
- k = x.e,
- l = y.e;
- // Either NaN?
- if ( !i || !j ) return null;
- a = xc && !xc[0];
- b = yc && !yc[0];
- // Either zero?
- if ( a || b ) return a ? b ? 0 : -j : i;
- // Signs differ?
- if ( i != j ) return i;
- a = i < 0;
- b = k == l;
- // Either Infinity?
- if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1;
- // Compare exponents.
- if ( !b ) return k > l ^ a ? 1 : -1;
- j = ( k = xc.length ) < ( l = yc.length ) ? k : l;
- // Compare digit by digit.
- for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1;
- // Compare lengths.
- return k == l ? 0 : k > l ^ a ? 1 : -1;
- }
- /*
- * Return true if n is a valid number in range, otherwise false.
- * Use for argument validation when ERRORS is false.
- * Note: parseInt('1e+1') == 1 but parseFloat('1e+1') == 10.
- */
- function intValidatorNoErrors( n, min, max ) {
- return ( n = truncate(n) ) >= min && n <= max;
- }
- function isArray(obj) {
- return Object.prototype.toString.call(obj) == '[object Array]';
- }
- /*
- * Convert string of baseIn to an array of numbers of baseOut.
- * Eg. convertBase('255', 10, 16) returns [15, 15].
- * Eg. convertBase('ff', 16, 10) returns [2, 5, 5].
- */
- function toBaseOut( str, baseIn, baseOut ) {
- var j,
- arr = [0],
- arrL,
- i = 0,
- len = str.length;
- for ( ; i < len; ) {
- for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn );
- arr[ j = 0 ] += ALPHABET.indexOf( str.charAt( i++ ) );
- for ( ; j < arr.length; j++ ) {
- if ( arr[j] > baseOut - 1 ) {
- if ( arr[j + 1] == null ) arr[j + 1] = 0;
- arr[j + 1] += arr[j] / baseOut | 0;
- arr[j] %= baseOut;
- }
- }
- }
- return arr.reverse();
- }
- function toExponential( str, e ) {
- return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) +
- ( e < 0 ? 'e' : 'e+' ) + e;
- }
- function toFixedPoint( str, e ) {
- var len, z;
- // Negative exponent?
- if ( e < 0 ) {
- // Prepend zeros.
- for ( z = '0.'; ++e; z += '0' );
- str = z + str;
- // Positive exponent
- } else {
- len = str.length;
- // Append zeros.
- if ( ++e > len ) {
- for ( z = '0', e -= len; --e; z += '0' );
- str += z;
- } else if ( e < len ) {
- str = str.slice( 0, e ) + '.' + str.slice(e);
- }
- }
- return str;
- }
- function truncate(n) {
- n = parseFloat(n);
- return n < 0 ? mathceil(n) : mathfloor(n);
- }
- // EXPORT
- BigNumber = constructorFactory();
- BigNumber['default'] = BigNumber.BigNumber = BigNumber;
- export default BigNumber;
|